Analysis of nonsmooth vector-valued functions associated with second-order cones

Abstract.Let be the Lorentz/second-order cone in . For any function f from to , one can define a corresponding function fsoc(x) on by applying f to the spectral values of the spectral decomposition of x∈ with respect to . We show that this vector-valued function inherits from f the properties of continuity, (local) Lipschitz continuity, directional differentiability, Fréchet differentiability, continuous differentiability, as well as (ρ-order) semismoothness. These results are useful for designing and analyzing smoothing methods and nonsmooth methods for solving second-order cone programs and complementarity problems.

[1]  M. Fukushima,et al.  A New Merit Function and a Descent Method for Semidefinite Complementarity Problems , 1998 .

[2]  Masao Fukushima,et al.  Modified Newton methods for solving a semismooth reformulation of monotone complementarity problems , 1996, Math. Program..

[3]  Paul Tseng,et al.  Merit functions for semi-definite complemetarity problems , 1998, Math. Program..

[4]  Defeng Sun,et al.  Complementarity Functions and Numerical Experiments on Some Smoothing Newton Methods for Second-Order-Cone Complementarity Problems , 2003, Comput. Optim. Appl..

[5]  R. Mifflin Semismooth and Semiconvex Functions in Constrained Optimization , 1977 .

[6]  Takashi Tsuchiya,et al.  Polynomial convergence of primal-dual algorithms for the second-order cone program based on the MZ-family of directions , 2000, Math. Program..

[7]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[8]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[9]  Adrian S. Lewis,et al.  Twice Differentiable Spectral Functions , 2001, SIAM J. Matrix Anal. Appl..

[10]  R. Bhatia Matrix Analysis , 1996 .

[11]  Andreas Fischer,et al.  Solution of monotone complementarity problems with locally Lipschitzian functions , 1997, Math. Program..

[12]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[13]  Houyuan Jiang,et al.  Global and Local Superlinear Convergence Analysis of Newton-Type Methods for Semismooth Equations with Smooth Least Squares , 1998 .

[14]  M. Fukushima,et al.  On the Coerciveness of Merit Functions for the Second-Order Cone Complementarity Problem , 2002 .

[15]  Robert J. Vanderbei,et al.  Solving Problems with Semidefinite and Related Constraints Using Interior-Point Methods for Nonlinear Programming , 2003, Math. Program..

[16]  Michael C. Ferris,et al.  Complementarity and variational problems : state of the art , 1997 .

[17]  Defeng Sun,et al.  A Squared Smoothing Newton Method for Nonsmooth Matrix Equations and Its Applications in Semidefinite Optimization Problems , 2003, SIAM J. Optim..

[18]  Paul Tseng,et al.  Non-Interior continuation methods for solving semidefinite complementarity problems , 2003, Math. Program..

[19]  Defeng Sun,et al.  Semismooth Homeomorphisms and Strong Stability of Semidefinite and Lorentz Complementarity Problems , 2003, Math. Oper. Res..

[20]  T. Tsuchiya A Convergence Analysis of the Scaling-invariant Primal-dual Path-following Algorithms for Second-ord , 1998 .

[21]  H. Upmeier ANALYSIS ON SYMMETRIC CONES (Oxford Mathematical Monographs) , 1996 .

[22]  Defeng Sun,et al.  Semismooth Matrix-Valued Functions , 2002, Math. Oper. Res..

[23]  Masao Fukushima,et al.  Smoothing Functions for Second-Order-Cone Complementarity Problems , 2002, SIAM J. Optim..

[24]  Liqun Qi,et al.  Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations , 1993, Math. Oper. Res..

[25]  Paul Tseng,et al.  Analysis of Nonsmooth Symmetric-Matrix-Valued Functions with Applications to Semidefinite Complementarity Problems , 2003, SIAM J. Optim..

[26]  Christian Kanzow,et al.  Semidefinite Programs: New Search Directions, Smoothing-Type Methods, and Numerical Results , 2002, SIAM J. Optim..

[27]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[28]  Farid Alizadeh,et al.  Associative and Jordan Algebras, and Polynomial Time Interior-Point Algorithms for Symmetric Cones , 2001, Math. Oper. Res..