A Particle Filter Approach to Approximate Posterior Cramer-Rao Lower Bound: The Case of Hidden States
暂无分享,去创建一个
[1] T. Song. Observability of target tracking with range-only measurements , 1999 .
[2] A. Farina,et al. Error performance bounds for tracking a manoeuvring target , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.
[3] Arye Nehorai,et al. Performance bounds for estimating vector systems , 2000, IEEE Trans. Signal Process..
[4] Arnaud Doucet,et al. An overview of sequential Monte Carlo methods for parameter estimation in general state-space models , 2009 .
[5] Olivier Tr,et al. Bearings-Only Tracking for Maneuvering Sources , 1998 .
[6] Petr Tichavský,et al. Filtering, predictive, and smoothing Cramér-Rao bounds for discrete-time nonlinear dynamic systems , 2001, Autom..
[7] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[8] P. Moral. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .
[9] Liu Si-hua. Suboptimal Nonlinear Filters for Tracking a Ballistic Target , 2005 .
[10] Harry L. Van Trees,et al. Detection, Estimation, and Modulation Theory, Part I , 1968 .
[11] Thomas B. Schön,et al. System identification of nonlinear state-space models , 2011, Autom..
[12] Y. Bar-Shalom,et al. Multisensor resource deployment using posterior Cramer-Rao bounds , 2004, IEEE Transactions on Aerospace and Electronic Systems.
[13] Tong Zhao,et al. Adaptive Polarized Waveform Design for Target Tracking Based on Sequential Bayesian Inference , 2008, IEEE Transactions on Signal Processing.
[14] R. B. Gopaluni. A particle filter approach to identification of nonlinear processes under missing observations , 2008 .
[15] Niclas Bergman,et al. Posterior Cramér-Rao Bounds for Sequential Estimation , 2001, Sequential Monte Carlo Methods in Practice.
[16] Fredrik Gustafsson,et al. Terrain navigation using Bayesian statistics , 1999 .
[17] X. R. Li,et al. A Survey of Maneuvering Target Tracking—Part III: Measurement Models , 2001 .
[18] A. Doucet. On sequential Monte Carlo methods for Bayesian filtering , 1998 .
[19] Fredrik Gustafsson,et al. Particle filtering and Cramer-Rao lower bound for underwater navigation , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..
[20] X. R. Li,et al. Survey of maneuvering target tracking: II. Ballistic target models , 2001 .
[21] Lennart Svensson,et al. On the Bayesian Cramér-Rao Bound for Markovian Switching Systems , 2010, IEEE Transactions on Signal Processing.
[22] Yong Qi,et al. Online Estimation of the Approximate Posterior Cramer-Rao Lower Bound for Discrete-Time Nonlinear Filtering , 2011, IEEE Transactions on Aerospace and Electronic Systems.
[23] Arnaud Doucet,et al. A survey of convergence results on particle filtering methods for practitioners , 2002, IEEE Trans. Signal Process..
[24] Pramod K. Varshney,et al. Conditional Posterior Cramér–Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation , 2012, IEEE Transactions on Signal Processing.
[25] Huadong Meng,et al. Computationally efficient PCRLB for tracking in cluttered environments: measurement existence conditioning approach , 2009 .
[26] A. Farina,et al. PCRLB for tracking in cluttered environments: measurement sequence conditioning approach , 2006, IEEE Transactions on Aerospace and Electronic Systems.
[27] N. Gordon,et al. Cramer-Rao bounds for non-linear filtering with measurement origin uncertainty , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).
[28] G. Kitagawa. Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .
[29] Nando de Freitas,et al. An Introduction to Sequential Monte Carlo Methods , 2001, Sequential Monte Carlo Methods in Practice.
[30] Christian Musso,et al. Improving Regularised Particle Filters , 2001, Sequential Monte Carlo Methods in Practice.
[31] X. Rong Li,et al. A Survey of Maneuvering Target Tracking — Part II : Ballistic Target Models , 2001 .
[32] M. Pitt,et al. Filtering via Simulation: Auxiliary Particle Filters , 1999 .
[33] Biao Huang,et al. On simultaneous on-line state and parameter estimation in non-linear state-space models , 2013 .
[34] Branko Ristic,et al. Cramer-Rao bound for nonlinear filtering with Pd<1 and its application to target tracking , 2002, IEEE Trans. Signal Process..
[35] A. Farina,et al. Tracking a ballistic target: comparison of several nonlinear filters , 2002 .
[36] Carlos H. Muravchik,et al. Posterior Cramer-Rao bounds for discrete-time nonlinear filtering , 1998, IEEE Trans. Signal Process..
[37] Hisashi Tanizaki. Nonlinear and Non-Gaussian State Space Modeling Using Sampling Techniques , 2001 .