A Particle Filter Approach to Approximate Posterior Cramer-Rao Lower Bound: The Case of Hidden States

The posterior Cramer-Rao lower bound (PCRLB) derived in [1] provides a bound on the mean square error (MSE) obtained with any nonlinear state filter. Computing the PCRLB involves solving complex, multi-dimensional expectations, which do not lend themselves to an easy analytical solution. Furthermore, any attempt to approximate it using numerical or simulation-based approaches require a priori access to the true states, which may not be available, except in simulations or in carefully designed experiments. To allow recursive approximation of the PCRLB when the states are hidden or unmeasured, a new approach based on sequential Monte-Carlo (SMC) or particle filters (PFs) is proposed. The approach uses SMC methods to estimate the hidden states using a sequence of the available sensor measurements. The developed method is general and can be used to approximate the PCRLB in nonlinear systems with non-Gaussian state and sensor noise. The efficacy of the developed method is illustrated on two simulation examples, including a practical problem of ballistic target tracking at reentry phase.

[1]  T. Song Observability of target tracking with range-only measurements , 1999 .

[2]  A. Farina,et al.  Error performance bounds for tracking a manoeuvring target , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[3]  Arye Nehorai,et al.  Performance bounds for estimating vector systems , 2000, IEEE Trans. Signal Process..

[4]  Arnaud Doucet,et al.  An overview of sequential Monte Carlo methods for parameter estimation in general state-space models , 2009 .

[5]  Olivier Tr,et al.  Bearings-Only Tracking for Maneuvering Sources , 1998 .

[6]  Petr Tichavský,et al.  Filtering, predictive, and smoothing Cramér-Rao bounds for discrete-time nonlinear dynamic systems , 2001, Autom..

[7]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[8]  P. Moral Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .

[9]  Liu Si-hua Suboptimal Nonlinear Filters for Tracking a Ballistic Target , 2005 .

[10]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory, Part I , 1968 .

[11]  Thomas B. Schön,et al.  System identification of nonlinear state-space models , 2011, Autom..

[12]  Y. Bar-Shalom,et al.  Multisensor resource deployment using posterior Cramer-Rao bounds , 2004, IEEE Transactions on Aerospace and Electronic Systems.

[13]  Tong Zhao,et al.  Adaptive Polarized Waveform Design for Target Tracking Based on Sequential Bayesian Inference , 2008, IEEE Transactions on Signal Processing.

[14]  R. B. Gopaluni A particle filter approach to identification of nonlinear processes under missing observations , 2008 .

[15]  Niclas Bergman,et al.  Posterior Cramér-Rao Bounds for Sequential Estimation , 2001, Sequential Monte Carlo Methods in Practice.

[16]  Fredrik Gustafsson,et al.  Terrain navigation using Bayesian statistics , 1999 .

[17]  X. R. Li,et al.  A Survey of Maneuvering Target Tracking—Part III: Measurement Models , 2001 .

[18]  A. Doucet On sequential Monte Carlo methods for Bayesian filtering , 1998 .

[19]  Fredrik Gustafsson,et al.  Particle filtering and Cramer-Rao lower bound for underwater navigation , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[20]  X. R. Li,et al.  Survey of maneuvering target tracking: II. Ballistic target models , 2001 .

[21]  Lennart Svensson,et al.  On the Bayesian Cramér-Rao Bound for Markovian Switching Systems , 2010, IEEE Transactions on Signal Processing.

[22]  Yong Qi,et al.  Online Estimation of the Approximate Posterior Cramer-Rao Lower Bound for Discrete-Time Nonlinear Filtering , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[23]  Arnaud Doucet,et al.  A survey of convergence results on particle filtering methods for practitioners , 2002, IEEE Trans. Signal Process..

[24]  Pramod K. Varshney,et al.  Conditional Posterior Cramér–Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation , 2012, IEEE Transactions on Signal Processing.

[25]  Huadong Meng,et al.  Computationally efficient PCRLB for tracking in cluttered environments: measurement existence conditioning approach , 2009 .

[26]  A. Farina,et al.  PCRLB for tracking in cluttered environments: measurement sequence conditioning approach , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[27]  N. Gordon,et al.  Cramer-Rao bounds for non-linear filtering with measurement origin uncertainty , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[28]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[29]  Nando de Freitas,et al.  An Introduction to Sequential Monte Carlo Methods , 2001, Sequential Monte Carlo Methods in Practice.

[30]  Christian Musso,et al.  Improving Regularised Particle Filters , 2001, Sequential Monte Carlo Methods in Practice.

[31]  X. Rong Li,et al.  A Survey of Maneuvering Target Tracking — Part II : Ballistic Target Models , 2001 .

[32]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[33]  Biao Huang,et al.  On simultaneous on-line state and parameter estimation in non-linear state-space models , 2013 .

[34]  Branko Ristic,et al.  Cramer-Rao bound for nonlinear filtering with Pd<1 and its application to target tracking , 2002, IEEE Trans. Signal Process..

[35]  A. Farina,et al.  Tracking a ballistic target: comparison of several nonlinear filters , 2002 .

[36]  Carlos H. Muravchik,et al.  Posterior Cramer-Rao bounds for discrete-time nonlinear filtering , 1998, IEEE Trans. Signal Process..

[37]  Hisashi Tanizaki Nonlinear and Non-Gaussian State Space Modeling Using Sampling Techniques , 2001 .