Influence of microstructure on replacement and porosity generation during experimental dolomitization of limestones

[1]  L. Charlet,et al.  Long-Term 13C Uptake by 12C-Enriched Calcite , 2021 .

[2]  L. Allard,et al.  Oxidation and associated pore structure modification during experimental alteration of granite , 2021 .

[3]  Yang Zhang,et al.  Two-stage fluid pathways generated by volume expansion reactions: insights from the replacement of pyrite by chalcopyrite , 2020, Scientific Reports.

[4]  L. Anovitz,et al.  Grain detachment and transport clogging during mineral dissolution in carbonate rocks with permeable grain boundaries , 2020 .

[5]  A. Busch,et al.  Water Uptake by Silica Nanopores: Impacts of Surface Hydrophilicity and Pore Size , 2020 .

[6]  C. Steefel Reactive Transport at the Crossroads , 2019, Reviews in Mineralogy and Geochemistry.

[7]  S. Kerisit,et al.  The Role of Chemistry in Fracture Pattern Development and Opportunities to Advance Interpretations of Geological Materials , 2019, Reviews of Geophysics.

[8]  A. Ievlev,et al.  Controls of Microstructure and Chemical Reactivity on the Replacement of Limestone by Fluorite Studied Using Spatially Resolved Small Angle X-ray and Neutron Scattering , 2019, ACS Earth and Space Chemistry.

[9]  K. Mohanty,et al.  ASP flooding in tight carbonate rocks , 2019, Fuel.

[10]  L. Levine,et al.  Development of combined microstructure and structure characterization facility for in situ and operando studies at the Advanced Photon Source. , 2018, Journal of applied crystallography.

[11]  Jared T. Freiburg,et al.  The effects of burial diagenesis on multiscale porosity in the St. Peter Sandstone: An imaging, small-angle, and ultra-small-angle neutron scattering analysis , 2017 .

[12]  R. Neumann,et al.  Mineral Quantification with Simultaneous Refinement of Ca-Mg Carbonates Non-Stoichiometry by X-ray Diffraction, Rietveld Method , 2017 .

[13]  F. Brandt,et al.  Retention of 226 Ra by barite: The role of internal porosity , 2017 .

[14]  J. Roberts,et al.  Microbially catalyzed dolomite formation: From near-surface to burial , 2017 .

[15]  A. Malthe-Sørenssen,et al.  Fluid-driven metamorphism of the continental crust governed by nanoscale fluid flow , 2017, Nature geoscience.

[16]  A. Immenhauser,et al.  Hydrothermal replacement of biogenic and abiogenic aragonite by Mg-carbonates – Relation between textural control on effective element fluxes and resulting carbonate phase , 2017 .

[17]  A. Putnis,et al.  The replacement of a carbonate rock by fluorite: Kinetics and microstructure , 2017 .

[18]  A. Putnis,et al.  Porosity generated during the fluid-mediated replacement of calcite by fluorite , 2016 .

[19]  Andrew G. Stack,et al.  The dynamic nature of crystal growth in pores , 2016, Scientific Reports.

[20]  G. Sposito,et al.  Molecular Dynamics Simulations of Anion Exclusion in Clay Interlayer Nanopores , 2016, Clays and Clay Minerals.

[21]  A. Putnis,et al.  The pseudomorphic replacement of marble by apatite: The role of fluid composition , 2016 .

[22]  S. Kerisit,et al.  Internal Domains of Natural Porous Media Revealed: Critical Locations for Transport, Storage, and Chemical Reaction. , 2016, Environmental science & technology.

[23]  J. Brugger,et al.  Textural and compositional complexities resulting from coupled dissolution–reprecipitation reactions in geomaterials , 2015 .

[24]  L. Baumgartner,et al.  Transport-controlled hydrothermal replacement of calcite by Mg-carbonates , 2015 .

[25]  A. Seyeux,et al.  Nanometre-scale evidence for interfacial dissolution-reprecipitation control of silicate glass corrosion. , 2015, Nature materials.

[26]  A. Stack Precipitation in Pores: A Geochemical Frontier , 2015 .

[27]  David R. Cole,et al.  Characterization and Analysis of Porosity and Pore Structures , 2015 .

[28]  J. Brugger,et al.  Grain boundaries as microreactors during reactive fluid flow: experimental dolomitization of a calcite marble , 2014, Contributions to Mineralogy and Petrology.

[29]  A. Stack Next generation models of carbonate mineral growth and dissolution , 2014 .

[30]  L. Qi,et al.  Biogenic and synthetic high magnesium calcite - a review. , 2014, Journal of structural biology.

[31]  L. Allard,et al.  Multi-scale characterization of pore evolution in a combustion metamorphic complex, Hatrurim basin, Israel: Combining (ultra) small-angle neutron scattering and image analysis , 2013 .

[32]  J. H. Kruhl,et al.  Quartz grain boundaries as fluid pathways in metamorphic rocks , 2013 .

[33]  A. Putnis,et al.  The role of grain boundaries and transient porosity in rocks as fluid pathways for reaction front propagation , 2013 .

[34]  L. Allard,et al.  Diagenetic changes in macro- to nano-scale porosity in the St. Peter Sandstone: An (ultra) small angle neutron scattering and backscattered electron imaging analysis , 2013 .

[35]  V. Urban,et al.  The 40 m general purpose small-angle neutron scattering instrument at Oak Ridge National Laboratory , 2012 .

[36]  Dirk Wallacher,et al.  Direct measurements of pore fluid density by vibrating tube densimetry. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[37]  M. Turpin,et al.  Empirical Calibration for Dolomite Stoichiometry Calculation: Application on Triassic Muschelkalk- Lettenkohle Carbonates (French Jura) , 2012 .

[38]  D. Sibley,et al.  On the evolution of dolomite stoichiometry and cation order during high-temperature synthesis experiments: An alternative model for the geochemical evolution of natural dolomites , 2011 .

[39]  L. Anovitz,et al.  O and H diffusion in uraninite: Implications for fluid–uraninite interactions, nuclear waste disposal, and nuclear forensics , 2011 .

[40]  R. Abart,et al.  Grain boundary and volume diffusion experiments in yttrium aluminium garnet bicrystals at 1,723 K: a miniaturized study , 2011 .

[41]  E. Roden,et al.  A relationship between d104 value and composition in the calcite-disordered dolomite solid-solution series , 2010 .

[42]  Edo S. Boek,et al.  Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries , 2010, Comput. Math. Appl..

[43]  D. Cherniak Diffusion in Carbonates, Fluorite, Sulfide Minerals, and Diamond , 2010 .

[44]  R. Dohmen,et al.  Diffusion in Polycrystalline Materials: Grain Boundaries, Mathematical Models, and Experimental Data , 2010 .

[45]  W. Hamilton,et al.  A new approach to quantification of metamorphism using ultra-small and small angle neutron scattering. , 2009 .

[46]  A. Putnis,et al.  Intragranular replacement of chlorapatite by hydroxy-fluor-apatite during metasomatism , 2009 .

[47]  Stephan Saalfeld,et al.  Globally optimal stitching of tiled 3D microscopic image acquisitions , 2009, Bioinform..

[48]  Pete R. Jemian,et al.  Irena: tool suite for modeling and analysis of small‐angle scattering , 2009 .

[49]  W. J. Clark,et al.  Dolomite : Perspectives on a Perplexing Mineral , 2009 .

[50]  A. Putnis,et al.  ALBITIZATION OF GRANITIC ROCKS: THE MECHANISM OF REPLACEMENT OF OLIGOCLASE BY ALBITE , 2008 .

[51]  R. Wirth,et al.  Growth kinetics of enstatite reaction rims studied on nano-scale, Part I: Methodology, microscopic observations and the role of water , 2007 .

[52]  Joachim Mayer,et al.  TEM Sample Preparation and FIB-Induced Damage , 2007 .

[53]  L. Gnar CRYSTALLOGRAPHIC TABLES FOR THE RHOMBOHEDRAL CARBONATES , 2007 .

[54]  Rrcneno,et al.  Variation of lattice parameters in some sedimentary dolomites , 2007 .

[55]  Steven R. Kline,et al.  Reduction and analysis of SANS and USANS data using IGOR Pro , 2006 .

[56]  M. Agamalian,et al.  Design and performance of a thermal-neutron double-crystal diffractometer for USANS at NIST , 2005 .

[57]  K. Tsukamoto,et al.  Letter. Direct observations of pseudomorphism: compositional and textural evolution at a fluid- solid interface , 2005 .

[58]  R. Wirth,et al.  An experimental study of dissolution–reprecipitation in fluorapatite: fluid infiltration and the formation of monazite , 2005 .

[59]  L. Anovitz,et al.  Isothermal time-series determination of the rate of diffusion of water in pachuca obsidian , 2004 .

[60]  D. A. Palmer,et al.  Solubility and surface adsorption characteristics of metal oxides , 2004 .

[61]  W. Heinrich,et al.  Grain boundary diffusion of Si, Mg, and O in enstatite reaction rims: a SIMS study using isotopically doped reactants , 2001 .

[62]  J. Warren Dolomite: occurrence, evolution and economically important associations , 2000 .

[63]  R. Yund,et al.  Silicon diffusion in forsterite aggregates: Implications for diffusion accommodated creep , 2000 .

[64]  S. Weiner,et al.  Formation of High‐Magnesian Calcites via an Amorphous Precursor Phase: Possible Biological Implications , 2000 .

[65]  R. Cygan,et al.  Diffusion of Ca and Mg in calcite , 1999 .

[66]  F. Ryerson,et al.  The temperature of formation of carbonate in Martian meteorite ALH84001: constraints from cation diffusion , 1999 .

[67]  R. Yund,et al.  Oxygen grain boundary diffusion in natural and hot-pressed calcite aggregates , 1998 .

[68]  L. Land Failure to Precipitate Dolomite at 25 °C fromDilute Solution Despite 1000-Fold Oversaturation after32 Years , 1998 .

[69]  William J. Orts,et al.  The 30 m Small-Angle Neutron Scattering Instruments at the National Institute of Standards and Technology , 1998 .

[70]  R. Yund,et al.  Volume and grain boundary diffusion of calcium in natural and hot-pressed calcite aggregates , 1996 .

[71]  J. Tullis,et al.  DEFORMATION-ENHANCED FLUID DISTRIBUTION IN FELDSPAR AGGREGATES AND IMPLICATIONS FOR DUCTILE SHEAR ZONES , 1996 .

[72]  D. Rubie,et al.  Magnesium grain boundary diffusion in forsterite aggregates at 1000°–1300°C and 0.1 MPa to 10 GPa , 1994 .

[73]  Sven Hovmöller,et al.  CRISP: crystallographic image processing on a personal computer , 1992 .

[74]  R. Yund,et al.  Oxygen diffusion in quartz: Dependence on temperature and water fugacity , 1991 .

[75]  H. Friedman,et al.  Self-diffusion and distinct diffusion of ions in solution , 1988 .

[76]  D. Sibley,et al.  Kinetics of dolomitization , 1987 .

[77]  L. Anovitz,et al.  Phase Equilibria in the System CaCO3-MgCO3-FeCO3 , 1987 .

[78]  J. L. Wilson,et al.  Closed-system marine burial diagenesis: isotopic data from the Austin Chalk and its components , 1984 .

[79]  P. A. Baker,et al.  Constraints on the formation of sedimentary dolomite. , 1981, Science.

[80]  A. Katz,et al.  The dolomitization of CaCO3: an experimental study at 252–295°C , 1977 .

[81]  D. Elliott Diffusion Flow Laws in Metamorphic Rocks , 1973 .

[82]  H. Taylor,et al.  The oxygen isotope and cation exchange chemistry of feldspars , 1967 .

[83]  L. Land Diagenesis of skeletal carbonates , 1967 .

[84]  Robert L. Coble,et al.  A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials , 1963 .

[85]  A. Claire The analysis of grain boundary diffusion measurements , 1963 .

[86]  H. Steinfink,et al.  Refinement of the crystal structure of dolomite , 1959 .

[87]  O. Joensuu,et al.  Relation between lattice constants and composition of Ca-Mg carbonates , 1958 .

[88]  R. Whipple CXXXVIII. Concentration contours in grain boundary diffusion , 1954 .

[89]  K. Chave A Solid Solution between Calcite and Dolomite , 1952, The Journal of Geology.