Plasmas meet nanoparticles—where synergies can advance the frontier of medicine

Nanoparticles and low-temperature plasmas have been developed, independently and often along different routes, to tackle the same set of challenges in biomedicine. There are intriguing similarities and contrasts in their interactions with cells and living tissues, and these are reflected directly in the characteristics and scope of their intended therapeutic solutions, in particular their chemical reactivity, selectivity against pathogens and cancer cells, safety to healthy cells and tissues and targeted delivery to diseased tissues. Time has come to ask the inevitable question of possible plasma–nanoparticle synergy and the related benefits to the development of effective, selective and safe therapies for modern medicine. This perspective paper offers a detailed review of the strengths and weakenesses of nanomedicine and plasma medicine as a stand-alone technology, and then provides a critical analysis of some of the major opportunities enabled by synergizing nanotechnology and plasma technology. It is shown that the plasma–nanoparticle synergy is best captured through plasma nanotechnology and its benefits for medicine are highly promising.

[1]  Francisco J. Gordillo-Vázquez,et al.  From Carbon Nanostructures to New Photoluminescence Sources: An Overview of New Perspectives and Emerging Applications of Low‐Pressure PECVD , 2007 .

[2]  Naomi J Halas,et al.  Nanoshell-enabled photothermal cancer therapy: impending clinical impact. , 2008, Accounts of chemical research.

[3]  Lei Xie,et al.  Plasma‐Assisted Approaches in Inorganic Nanostructure Fabrication , 2010, Advanced materials.

[4]  G. Shama,et al.  Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet , 2009 .

[5]  Yunzhi Yang,et al.  A review on calcium phosphate coatings produced using a sputtering process--an alternative to plasma spraying. , 2005, Biomaterials.

[6]  Igor Levchenko,et al.  Plasma-assisted self-organized growth of uniform carbon nanocone arrays , 2007 .

[7]  Jianjun Shi,et al.  Physical Mechanisms of Inactivation of Bacillus subtilis Spores Using Cold Atmospheric Plasmas , 2006, IEEE Transactions on Plasma Science.

[8]  Michael G. Kong,et al.  Protein destruction by atmospheric pressure glow discharges , 2007 .

[9]  Olivier Joubert,et al.  The Cutting Edge of Plasma Etching , 2008, Science.

[10]  G. Morfill,et al.  Designing plasmas for chronic wound disinfection , 2009 .

[11]  Bing Xu,et al.  Applications of nanomaterials inside cells , 2009 .

[12]  R. Sasisekharan,et al.  Exploiting nanotechnology to target cancer , 2007, British Journal of Cancer.

[13]  J. Pfeilschifter,et al.  Nitric oxide triggers enhanced induction of vascular endothelial growth factor expression in cultured keratinocytes (HaCaT) and during cutaneous wound repair , 1999, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[14]  A. Shekhter,et al.  Beneficial effect of gaseous nitric oxide on the healing of skin wounds. , 2005, Nitric oxide : biology and chemistry.

[15]  M. Gundersen,et al.  Pulsed Atmospheric-Pressure Cold Plasma for Endodontic Disinfection $^{\ast}$ , 2009, IEEE Transactions on Plasma Science.

[16]  N. Mason,et al.  DNA strand scission induced by a non-thermal atmospheric pressure plasma jet. , 2010, Physical chemistry chemical physics : PCCP.

[17]  Davide Mariotti,et al.  Microplasmas for nanomaterials synthesis , 2010 .

[18]  M. Rong,et al.  Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium–oxygen glow discharges , 2010 .

[19]  J. Sobilo,et al.  Antitumor Effect of Plasma Treatment on U87 Glioma Xenografts: Preliminary Results , 2010 .

[20]  Igor Levchenko,et al.  Nanostructures of various dimensionalities from plasma and neutral fluxes , 2007 .

[21]  G. Oberdörster,et al.  Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles , 2005, Environmental health perspectives.

[22]  J. Hadgraft Skin, the final frontier. , 2001, International journal of pharmaceutics.

[23]  R. Todhunter,et al.  In vitro analysis of nonthermal plasma as a disinfecting agent. , 2006, American journal of veterinary research.

[24]  G. Shama,et al.  Cold atmospheric plasma disinfection of cut fruit surfaces contaminated with migrating microorganisms. , 2008, Journal of food protection.

[25]  B. Nyström,et al.  Nanobead-based interventions for the treatment and prevention of tuberculosis , 2010, Nature Reviews Microbiology.

[26]  M. Kong,et al.  Evolution of discharge structure in capacitive radio-frequency atmospheric microplasmas. , 2006, Physical review letters.

[27]  Satoshi Hamaguchi,et al.  Effects of pH on Bacterial Inactivation in Aqueous Solutions due to Low‐Temperature Atmospheric Pressure Plasma Application , 2010 .

[28]  Michael G. Kong,et al.  Protein destruction by a helium atmospheric pressure glow discharge: Capability and mechanisms , 2007 .

[29]  U. Kogelschatz Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications , 2003 .

[30]  M. Keidar,et al.  On a Model of Nanoparticle Collection by an Electrical Probe , 2010, IEEE Transactions on Plasma Science.

[31]  Jianjun Shi,et al.  Contrasting characteristics of pulsed and sinusoidal cold atmospheric plasma jets , 2006 .

[32]  Bruce Ravel,et al.  Protein Oxidation Implicated as the Primary Determinant of Bacterial Radioresistance , 2007, PLoS biology.

[33]  Shu Xiao,et al.  Bioelectric Effects of Intense Nanosecond Pulses , 2007, IEEE Transactions on Dielectrics and Electrical Insulation.

[34]  M. Keidar,et al.  Mechanism of carbon nanostructure synthesis in arc plasma , 2010 .

[35]  Masayuki Otsuki,et al.  Materials chemistry: A synthetic enamel for rapid tooth repair , 2005, Nature.

[36]  J. Gugenheim,et al.  Use of PlasmaJet™ System in Patients Undergoing Abdominal Lipectomy following Massive Weight Loss Resulting from Bariatric Surgery: Early Experience , 2006, Obesity surgery.

[37]  C. Lok Nanotechnology: Small wonders , 2010, Nature.

[38]  Wenting Sun,et al.  Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium , 2008 .

[39]  T. Kocher,et al.  The hairline plasma: An intermittent negative dc-corona discharge at atmospheric pressure for plasma medical applications , 2010 .

[40]  C D Woodworth,et al.  Atomic force microscopy detects differences in the surface brush of normal and cancerous cells. , 2009, Nature nanotechnology.

[41]  Michael Keidar,et al.  The large-scale production of graphene flakes using magnetically-enhanced arc discharge between carbon electrodes , 2010 .

[42]  Meyya Meyyappan,et al.  A review of plasma enhanced chemical vapour deposition of carbon nanotubes , 2009 .

[43]  James L. Walsh,et al.  Atmospheric plasma jet array in parallel electric and gas flow fields for three-dimensional surface treatment , 2009 .

[44]  Jing Zhang,et al.  A hypersonic plasma bullet train traveling in an atmospheric dielectric-barrier discharge jet , 2008 .

[45]  J. Walsh,et al.  Spatially extended atmospheric plasma arrays , 2010 .

[46]  J. Walsh,et al.  Contrasting characteristics of linear-field and cross-field atmospheric plasma jets , 2008 .

[47]  Gregory Fridman,et al.  Blood Coagulation and Living Tissue Sterilization by Floating-Electrode Dielectric Barrier Discharge in Air , 2006 .

[48]  M Landthaler,et al.  A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients , 2010, The British journal of dermatology.

[49]  M. Keidar,et al.  Nonstationary macroparticle charging in an arc plasma jet , 1995 .

[50]  Shraddha S. Nigavekar,et al.  Fabrication of {198Au0} radioactive composite nanodevices and their use for nanobrachytherapy. , 2008, Nanomedicine : nanotechnology, biology, and medicine.

[51]  A. Mizuno,et al.  States of Biological Components in Bacteria and Bacteriophages during Inactivation by Atmospheric Dielectric Barrier Discharges , 2008 .

[52]  M. Keidar,et al.  Plasma-Controlled Cell Migration: Localization of Cold Plasma-Cell Interaction Region , 2011 .

[53]  M. Hori,et al.  Insights into sticking of radicals on surfaces for smart plasma nano-processing , 2007 .

[54]  M. López-Quintela,et al.  Penetration of metallic nanoparticles in human full-thickness skin. , 2007, The Journal of investigative dermatology.

[55]  K. Ostrikov,et al.  Thermophoretic control of building units in the plasma-assisted deposition of nanostructured carbon films , 2004 .

[56]  E. Stoffels,et al.  The effects of UV irradiation and gas plasma treatment on living mammalian cells and bacteria: a comparative approach , 2004, IEEE Transactions on Plasma Science.

[57]  A. Pruden,et al.  Differential gene expression in Escherichia coli following exposure to nonthermal atmospheric pressure plasma , 2009, Journal of applied microbiology.

[58]  Yuan Pan,et al.  An $RC$ Plasma Device for Sterilization of Root Canal of Teeth , 2009, IEEE Transactions on Plasma Science.

[59]  Mounir Laroussi,et al.  Room-temperature atmospheric pressure plasma plume for biomedical applications , 2005 .

[60]  C. Rameh,et al.  Microdebrider-assisted partial tonsillectomy: short- and long-term outcomes , 2008, European Archives of Oto-Rhino-Laryngology.

[61]  Kevin Robbie,et al.  Nanomaterials and nanoparticles: Sources and toxicity , 2007, Biointerphases.

[62]  Igor Levchenko,et al.  From nucleation to nanowires: a single-step process in reactive plasmas. , 2010, Nanoscale.

[63]  X. Chen,et al.  Nanosilver: a nanoproduct in medical application. , 2008, Toxicology letters.

[64]  Gregory Fridman,et al.  Comparison of Direct and Indirect Effects of Non‐Thermal Atmospheric‐Pressure Plasma on Bacteria , 2007 .

[65]  J. Heber Plasmonics: Surfing the wave , 2009, Nature.

[66]  J. Walsh,et al.  Room-temperature atmospheric argon plasma jet sustained with submicrosecond high-voltage pulses , 2007 .

[67]  Cheong Hoong Diong,et al.  RF plasma sputtering deposition of hydroxyapatite bioceramics : synthesis, performance, and biocompatibility , 2005 .

[68]  Ling Wang,et al.  Antiangiogenic Properties of Gold Nanoparticles , 2005, Clinical Cancer Research.

[69]  H. Hofmann,et al.  Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system , 2005 .

[70]  M. Keidar,et al.  Temporal behavior of cold atmospheric plasma jet , 2009 .

[71]  Nigel J Walker,et al.  Research strategies for safety evaluation of nanomaterials, part II: toxicological and safety evaluation of nanomaterials, current challenges and data needs. , 2005, Toxicological sciences : an official journal of the Society of Toxicology.

[72]  J. Vierendeels,et al.  Dc excited glow discharges in atmospheric pressure air in pin-to-water electrode systems , 2008 .

[73]  Gregor E. Morfill,et al.  Characterization of microwave plasma torch for decontamination , 2008 .

[74]  Paul Chen,et al.  Inactivation of Escherichia coli on almonds using nonthermal plasma. , 2007, Journal of food science.

[75]  F. Iza,et al.  Air plasma coupled with antibody-conjugated nanoparticles: a new weapon against cancer , 2009 .

[76]  V Wendel,et al.  Distribution of sunscreens on skin. , 2002, Advanced drug delivery reviews.

[77]  Fan Wu,et al.  Preparation of hemoglobin-loaded nano-sized particles with porous structure as oxygen carriers. , 2007, Biomaterials.

[78]  Lin He,et al.  Nanoparticles for bioanalysis. , 2003, Current opinion in chemical biology.

[79]  M. Radomski,et al.  Nanoparticles: pharmacological and toxicological significance , 2007, British journal of pharmacology.

[80]  B. Baroli,et al.  Penetration of nanoparticles and nanomaterials in the skin: fiction or reality? , 2010, Journal of pharmaceutical sciences.

[81]  Akira Mizuno,et al.  Biological Evaluation of DNA Damage in Bacteriophages Inactivated by Atmospheric Pressure Cold Plasma , 2010 .

[82]  P. Bruggeman,et al.  Mass spectrometry study of positive and negative ions in a capacitively coupled atmospheric pressure RF excited glow discharge in He–water mixtures , 2010 .

[83]  Hendrik Engelbrecht,et al.  Radioactive gold nanoparticles in cancer therapy: therapeutic efficacy studies of GA-198AuNP nanoconstruct in prostate tumor-bearing mice. , 2010, Nanomedicine : nanotechnology, biology, and medicine.

[84]  R. Hatakeyama,et al.  Effects of micro- and macro-plasma-sheath electric fields on carbon nanotube growth in a cross-field radio-frequency discharge , 2004 .

[85]  G. Zhang,et al.  Chemical Mechanisms of Bacterial Inactivation Using Dielectric Barrier Discharge Plasma in Atmospheric Air , 2008, IEEE Transactions on Plasma Science.

[86]  Bruce R. Locke,et al.  Electrohydraulic Discharge and Nonthermal Plasma for Water Treatment , 2006 .

[87]  F. Iza,et al.  Global model of low-temperature atmospheric-pressure He + H2O plasmas , 2010 .

[88]  Y. Kim,et al.  Degradation of adhesion molecules of G361 melanoma cells by a non-thermal atmospheric pressure microplasma , 2009 .

[89]  M. Timms,et al.  Coblation tonsillectomy: a double blind randomized controlled study , 2002, The Journal of Laryngology & Otology.

[90]  C. Ratledge,et al.  Iron metabolism in pathogenic bacteria. , 2000, Annual review of microbiology.

[91]  L. Chladekova,et al.  DC discharges in atmospheric air for bio-decontamination – spectroscopic methods for mechanism identification , 2009 .

[92]  M. Keidar,et al.  Tailored distribution of single-wall carbon nanotubes from arc plasma synthesis using magnetic fields. , 2010, ACS nano.

[93]  Takehiko Sato,et al.  Characterization of Low‐Temperature Microwave Plasma Treatment With and Without UV Light for Disinfection , 2010 .

[94]  Ajay Kumar Gupta,et al.  Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. , 2005, Biomaterials.

[95]  Xi-Wei Hu,et al.  An 11 cm long atmospheric pressure cold plasma plume for applications of plasma medicine , 2008 .

[96]  Yuan-Jian Zhou,et al.  Long-distance oxygen plasma sterilization: Effects and mechanisms , 2008 .

[97]  P. O'Neill,et al.  The Chemical Basis of Radiation Biology , 1987 .

[98]  F. Iza,et al.  Electron kinetics in radio-frequency atmospheric-pressure microplasmas. , 2007, Physical review letters.

[99]  C. A. Kent,et al.  Monitoring population dynamics of the thermophilic Bacillus licheniformis CCMI 1034 in batch and continuous cultures using multi-parameter flow cytometry. , 2005, Journal of biotechnology.

[100]  Elazer R. Edelman,et al.  Adv. Drug Delivery Rev. , 1997 .

[101]  K. Weltmann,et al.  Influence of the Air Humidity on the Reduction of Bacillus Spores in a Defined Environment at Atmospheric Pressure Using a Dielectric Barrier Surface Discharge , 2010 .

[102]  Ajay Kumar Gupta,et al.  Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. , 2005, Biomaterials.

[103]  Michael G. Kong,et al.  Three modes in a radio frequency atmospheric pressure glow discharge , 2003 .

[104]  M. Soloviev,et al.  Nanobiotechnology today: focus on nanoparticles , 2007, Journal of nanobiotechnology.

[105]  Kostya Ostrikov,et al.  Colloquium: Reactive plasmas as a versatile nanofabrication tool , 2005 .

[106]  F. Hutchinson The molecular basis for radiation effects on cells. , 1966, Cancer research.

[107]  M. Keidar,et al.  Influence of Cold Plasma Atmospheric Jet on Surface Integrin Expression of Living Cells , 2010 .

[108]  T. Brocklehurst,et al.  Atmospheric plasma inactivation of biofilm-forming bacteria for food safety control , 2005, IEEE Transactions on Plasma Science.

[109]  James L. Walsh,et al.  Probing bactericidal mechanisms induced by cold atmospheric plasmas with Escherichia coli mutants , 2007 .

[110]  K. Ostrikov,et al.  Ion-assisted precursor dissociation and surface diffusion : enabling rapid, low-temperature growth of carbon nanofibers , 2007 .

[111]  Buddy D. Ratner,et al.  Biomaterials Science: An Introduction to Materials in Medicine , 1996 .

[112]  Jianjun Shi,et al.  Submicrosecond pulsed atmospheric glow discharges sustained without dielectric barriers at kilohertz frequencies , 2006 .

[113]  Kostya Ostrikov,et al.  Plasma-aided nanofabrication: where is the cutting edge? , 2007 .

[114]  Gregory Fridman,et al.  Applied Plasma Medicine , 2008 .

[115]  Mark J. Kushner,et al.  Intracellular electric fields produced by dielectric barrier discharge treatment of skin , 2010 .

[116]  K. Ostrikov,et al.  Silicon on silicon: self-organized nanotip arrays formed in reactive Ar+H2 plasmas , 2010, Nanotechnology.

[117]  James L. Walsh,et al.  Microplasmas: sources, particle kinetics, and biomedical applications , 2008 .

[118]  G. Shama,et al.  Effects of cell surface loading and phase of growth in cold atmospheric gas plasma inactivation of Escherichia coli K12 , 2006, Journal of applied microbiology.

[119]  Wei-Hung Chiang,et al.  Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning Ni(x)Fe(1-x) nanoparticles. , 2009, Nature materials.

[120]  P. Hoet,et al.  Nanoparticles – known and unknown health risks , 2004, Journal of nanobiotechnology.

[121]  R. Leask,et al.  Cell permeabilization using a non-thermal plasma , 2009 .

[122]  A. Gutsol,et al.  Application of nanosecond-pulsed dielectric barrier discharge for biomedical treatment of topographically non-uniform surfaces , 2009 .

[123]  C. Clerc,et al.  Structure and hydrogen content of polymorphous silicon thin films studied by spectroscopic ellipsometry and nuclear measurements , 2004 .

[124]  K A Gross,et al.  Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review. , 2001, Journal of biomedical materials research.

[125]  M. Siegal,et al.  Synthesis of large arrays of well-aligned carbon nanotubes on glass , 1998, Science.

[126]  C. Sonntag,et al.  The chemical basis of radiation biology , 1987 .

[127]  Gregor E. Morfill,et al.  Plasma medicine: an introductory review , 2009 .

[128]  G. Georghiou,et al.  Bactericidal Action of the Reactive Species Produced by Gas-Discharge Nonthermal Plasma at Atmospheric Pressure: A Review , 2006, IEEE Transactions on Plasma Science.

[129]  James L. Walsh,et al.  10 ns pulsed atmospheric air plasma for uniform treatment of polymeric surfaces , 2007 .

[130]  P. Roca i Cabarrocas,et al.  Shedding light on the growth of amorphous, polymorphous, protocrystalline and microcrystalline silicon thin films , 2001 .

[131]  P. Couvreur,et al.  Nanotechnology: Intelligent Design to Treat Complex Disease , 2006, Pharmaceutical Research.

[132]  H. Krug,et al.  Oops they did it again! Carbon nanotubes hoax scientists in viability assays. , 2006, Nano letters.

[133]  K. Schoenbach,et al.  Intracellular effect of ultrashort electrical pulses , 2001, Bioelectromagnetics.

[134]  J. Imlay Cellular defenses against superoxide and hydrogen peroxide. , 2008, Annual review of biochemistry.

[135]  U. Kortshagen Nonthermal plasma synthesis of semiconductor nanocrystals , 2009 .

[136]  Michael Keidar,et al.  Factors affecting synthesis of single wall carbon nanotubes in arc discharge , 2007 .

[137]  M. Kong,et al.  A cold atmospheric pressure plasma jet controlled with spatially separated dual-frequency excitations , 2009 .

[138]  D. Bagchi,et al.  Oxidative mechanisms in the toxicity of metal ions. , 1995, Free radical biology & medicine.

[139]  Zhiqiang Chen,et al.  Spontaneous growth of superstructure alpha-Fe2O3 nanowire and nanobelt arrays in reactive oxygen plasma. , 2008, Small.

[140]  Heike Richter,et al.  Application of a plasma-jet for skin antisepsis: analysis of the thermal action of the plasma by laser scanning microscopy , 2010 .

[141]  Volker Wagner,et al.  The emerging nanomedicine landscape , 2006, Nature Biotechnology.