DECOMPOSABLE FUNCTORS AND THE EXPONENTIAL PRINCIPLE, II

We develop a new setting for the exponential principle in the context of multisort species, where indecomposable objects are generated intrinsically instead of being given in advance. Our approach uses the language of functors and natural transformations (composition operators), and we show that, somewhat surprisingly, a single axiom for the composition already suffices to guarantee validity o the ex- ponential formula. We provide various illustrations of our theory, among which are applications to the enumeration of (semi-)magic squares.

[1]  I. Goulden,et al.  Combinatorial Enumeration , 2004 .

[2]  F. Linton,et al.  Categories et Structures. , 1968 .

[3]  Hansraj Gupta Enumeration of symmetric matrices , 1968 .

[4]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[5]  W. Rheinboldt,et al.  Generalized hypergeometric functions , 1968 .

[6]  M. Aigner Combinatorial Order Theory , 1979 .

[7]  E. Capelas de Oliveira On generating functions , 1992 .

[8]  Gilbert Labelle,et al.  An extension of the exponential formula in enumerative combinatorics , 1995, Electron. J. Comb..

[9]  R. Yoshida,et al.  A generating function for all semi-magic squares and the volume of the Birkhoff polytope , 2009 .

[10]  Matías Menni Combinatorial functional and differential equations applied to differential posets , 2008, Discret. Math..

[11]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[12]  Hansraj Gupta,et al.  A combinatorial distribution problem , 1966 .

[13]  Matías Menni,et al.  SYMMETRIC MONOIDAL COMPLETIONS AND THE EXPONENTIAL PRINCIPLE AMONG LABELED COMBINATORIAL STRUCTURES , 2003 .

[14]  Moshe Cohen,et al.  The Number of “Magic” Squares, Cubes, and Hypercubes , 2003, Am. Math. Mon..

[15]  H. Wilf generatingfunctionology: Third Edition , 1990 .

[16]  Andreas W. M. Dress,et al.  Decomposable Functors and the Exponential Principle , 1997 .

[17]  J. Shaw Combinatory Analysis , 1917, Nature.

[18]  D. Foata La série génératrice exponentielle dans les problèmes d'énumération , 1974 .

[19]  Edward A. Bender,et al.  THE ENUMERATIVE USES OF GENERATING FUNCTIONS. , 1969 .

[20]  Richard P. Stanley,et al.  Linear homogeneous Diophantine equations and magic labelings of graphs , 1973 .

[21]  A. Joyal Une théorie combinatoire des séries formelles , 1981 .

[22]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[23]  ALGEBRAIC CATEGORIES WHOSE PROJECTIVES ARE EXPLICITLY FREE , 2009 .

[24]  Gilbert Labelle,et al.  Combinatorial species and tree-like structures , 1997, Encyclopedia of mathematics and its applications.

[25]  G. M. Kelly,et al.  A universal property of the convolution monoidal structure , 1986 .

[26]  G. M. Kelly,et al.  BASIC CONCEPTS OF ENRICHED CATEGORY THEORY , 2022, Elements of ∞-Category Theory.

[27]  J. D. Loera,et al.  Polyhedral Cones of Magic Cubes and Squares , 2002, math/0201108.

[28]  Alan D. Sokal,et al.  Some variants of the exponential formula, with application to the multivariate Tutte polynomial (alias Potts model) , 2008, 0803.1477.