Interaction engineering in organic–inorganic hybrid perovskite solar cells

Low production cost and ever-increasing efficiencies make perovskite solar cells a flourishing area of research. The high efficiency originates from not only the unique optoelectronic properties of perovskites, but also various device optimization strategies, such as interfacial engineering, defect engineering, and componential engineering. Behind these strategies stand the fundamental intermolecular interactions and bondings, such as hydrogen bonding, halide bonding, ionic bonding, Lewis acid–base interactions, and van der Waals interactions. In this review, we focus on different types of interactions and summarize the progresses made in perovskite solar cells. Additionally, perspectives on further efforts in improving device performance and stability are presented.

[1]  Peng Wang,et al.  D–π–D molecular semiconductors for perovskite solar cells: the superior role of helical versus planar π-linkers , 2020, Chemical Science.

[2]  H. Yun,et al.  Chiral Stereoisomer Engineering of Electron Transporting Materials for Efficient and Stable Perovskite Solar Cells , 2020, Advanced Functional Materials.

[3]  Y. Qi,et al.  Highly Efficient Perovskite Solar Cells Enabled by Multiple Ligand Passivation , 2020, Advanced Energy Materials.

[4]  Matthew R. Leyden,et al.  Detrimental Effect of Unreacted PbI2 on the Long‐Term Stability of Perovskite Solar Cells , 2020, Advanced materials.

[5]  W. Lei,et al.  Ion Migrations in Lead Halide Perovskite Single Crystals with Different Halide Components , 2020, physica status solidi (b).

[6]  Yongli Gao,et al.  Reducing Surface Halide Deficiency for Efficient and Stable Iodide-Based Perovskite Solar Cells. , 2020, Journal of the American Chemical Society.

[7]  Lei Zhang,et al.  Atomistic understanding on molecular halide perovskite/organic/TiO2 interface with bifunctional interfacial modifier: A case study on halogen bond and carboxylic acid group , 2020 .

[8]  Li‐Min Liu,et al.  Synergy between Ion Migration and Charge Carrier Recombination in Metal-Halide Perovskites. , 2020, Journal of the American Chemical Society.

[9]  S. Zakeeruddin,et al.  Supramolecular Modulation of Hybrid Perovskite Solar Cells via Bifunctional Halogen Bonding Revealed by Two-Dimensional 19F Solid-State NMR Spectroscopy. , 2020, Journal of the American Chemical Society.

[10]  Martin A. Green,et al.  Solar cell efficiency tables (Version 55) , 2019, Progress in Photovoltaics: Research and Applications.

[11]  Kun-lun Wang,et al.  Light enhanced moisture degradation of perovskite solar cell material CH3NH3PbI3 , 2019, Journal of Materials Chemistry A.

[12]  Yancong Feng,et al.  Stable Triple Cation Perovskite Precursor for Highly Efficient Perovskite Solar Cells Enabled by Interaction with 18C6 Stabilizer , 2019, Advanced Functional Materials.

[13]  Q. Gong,et al.  Minimizing non-radiative recombination losses in perovskite solar cells , 2019, Nature Reviews Materials.

[14]  Sylwia Klejna,et al.  Structural and electronic properties of multifunctional carbon composites of organometal halide perovskites , 2019, Journal of Materials Chemistry A.

[15]  Jing Kong,et al.  Tuning, optimization, and perovskite solar cell device integration of ultrathin poly(3,4-ethylene dioxythiophene) films via a single-step all-dry process , 2019, Science Advances.

[16]  Joseph J. Berry,et al.  Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability , 2019, Nature Energy.

[17]  M. A. Ortuño,et al.  Supramolecular Coordination of Pb2+ Defects in Hybrid Lead Halide Perovskite Films Using Truxene Derivatives as Lewis Base Interlayers. , 2019, Chemphyschem : a European journal of chemical physics and physical chemistry.

[18]  L. Duchêne,et al.  I2 vapor-induced degradation of formamidinium lead iodide based perovskite solar cells under heat–light soaking conditions , 2019, Energy & Environmental Science.

[19]  Bo Li,et al.  Ultra-long photoluminescence lifetime in an inorganic halide perovskite thin film , 2019, Journal of Materials Chemistry A.

[20]  T. Hayat,et al.  Enhancing the Phase Stability of Inorganic α-CsPbI3 by the Bication-Conjugated Organic Molecule for Efficient Perovskite Solar Cells. , 2019, ACS applied materials & interfaces.

[21]  Jia Zhu,et al.  Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink , 2019, Nature Energy.

[22]  Zongxiang Xu,et al.  A Molecular Design Strategy in Developing Titanyl Phthalocyanines as Dopant-Free Hole Transporting Materials for Perovskite Solar Cells: Peripheral or Non-Peripheral Substituents? , 2019, ACS applied materials & interfaces.

[23]  Takeshi Noda,et al.  Highly Stable and Efficient FASnI3‐Based Perovskite Solar Cells by Introducing Hydrogen Bonding , 2019, Advanced materials.

[24]  D. Smilgies,et al.  Understanding hydrogen bonding interactions in crosslinked methylammonium lead iodide crystals: towards reducing moisture and light degradation pathways. , 2019, Angewandte Chemie.

[25]  Weihua Tang,et al.  Dithieno[3,2-b:2',3'-d]pyrrole Cored p-Type Semiconductors Enabling 20% Efficiency Dopant-Free Perovskite Solar Cells. , 2019, Angewandte Chemie.

[26]  K. Yoshino,et al.  Suppression of Charge Carrier Recombination in Lead-Free Tin Halide Perovskite via Lewis Base Post-Treatment. , 2019, The journal of physical chemistry letters.

[27]  Andrew H. Proppe,et al.  Photochemically Crosslinked Quantum Well Ligands for 2D/3D Perovskite Photovoltaics with Improved Photovoltage and Stability. , 2019, Journal of the American Chemical Society.

[28]  Y. Qi,et al.  Thermodynamically stabilized β-CsPbI3–based perovskite solar cells with efficiencies >18% , 2019, Science.

[29]  N. Armstrong,et al.  Impact of Titanium Dioxide Surface Defects on the Interfacial Composition and Energetics of Evaporated Perovskite Active Layers. , 2019, ACS applied materials & interfaces.

[30]  U. Rothlisberger,et al.  Ruddlesden-Popper Phases of Methylammonium-Based Two-Dimensional Perovskites with 5-Ammonium Valeric Acid AVA2MA n-1Pb nI3 n+1 with n = 1, 2, and 3. , 2019, The journal of physical chemistry letters.

[31]  E. Nakamura,et al.  Organic/Inorganic Hybrid p-Type Semiconductor Doping Affords Hole Transporting Layer Free Thin-Film Perovskite Solar Cells with High Stability. , 2019, ACS applied materials & interfaces.

[32]  A. Alberti,et al.  Pb clustering and PbI2 nanofragmentation during methylammonium lead iodide perovskite degradation , 2019, Nature Communications.

[33]  M. Kanatzidis,et al.  Ethylenediammonium-Based "Hollow" Pb/Sn Perovskites with Ideal Band Gap Yield Solar Cells with Higher Efficiency and Stability. , 2019, Journal of the American Chemical Society.

[34]  Michael Saliba,et al.  Highly efficient and stable inverted perovskite solar cells using down-shifting quantum dots as a light management layer and moisture-assisted film growth , 2019, Journal of Materials Chemistry A.

[35]  Yongli Gao,et al.  Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells , 2019, Nature Energy.

[36]  S. Quaranta,et al.  Synthesis, physico-chemical characterization and structure of the elusive hydroxylammonium lead iodide perovskite NH3OHPbI3. , 2019, Dalton transactions.

[37]  Y. Li,et al.  Supramolecular Engineering for Formamidinium‐Based Layered 2D Perovskite Solar Cells: Structural Complexity and Dynamics Revealed by Solid‐State NMR Spectroscopy , 2019, Advanced Energy Materials.

[38]  Ming Li,et al.  Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech Supersymmetric Laser Arrays. Supersymmetric Laser Arrays. , 2022 .

[39]  Xueming Li,et al.  Synergistic Surface Passivation of CH3 NH3 PbBr3 Perovskite Quantum Dots with Phosphonic Acid and (3-Aminopropyl)triethoxysilane. , 2019, Chemistry.

[40]  Su-E. Hao,et al.  Enhanced Efficiency of Planar Heterojunction Perovskite Solar Cells by a Light Soaking Treatment on Tris(pentafluorophenyl)borane-Doped Poly(triarylamine) Solution. , 2019, ACS applied materials & interfaces.

[41]  Jinsong Huang,et al.  Tailoring Passivation Molecular Structures for Extremely Small Open-Circuit Voltage Loss in Perovskite Solar Cells. , 2019, Journal of the American Chemical Society.

[42]  Z. Tang,et al.  Halogen bonding reduces intrinsic traps and enhances charge mobilities in halide perovskite solar cells , 2019, Journal of Materials Chemistry A.

[43]  Ross D. Hoehn,et al.  Role of Water on the Rotational Dynamics of the Organic Methylammonium Cation: A First Principles Analysis , 2019, Scientific Reports.

[44]  Michael R. Wasielewski,et al.  Structure and chemical stability in perovskite–polymer hybrid photovoltaic materials , 2019, Journal of Materials Chemistry A.

[45]  Mengqi Cui,et al.  Moisture-tolerant supermolecule for the stability enhancement of organic-inorganic perovskite solar cells in ambient air. , 2019, Nanoscale.

[46]  Jeffrey A. Christians,et al.  Doping strategies for small molecule organic hole-transport materials: impacts on perovskite solar cell performance and stability , 2019, Chemical science.

[47]  Yongfang Li,et al.  Precise Control of Crystal Growth for Highly Efficient CsPbI2Br Perovskite Solar Cells , 2019, Joule.

[48]  Zesheng Li,et al.  A peri-Xanthenoxanthene Centered Columnar-Stacking Organic Semiconductor for Efficient, Photothermally Stable Perovskite Solar Cells. , 2018, Chemistry.

[49]  P. Liu,et al.  Effect of High Dipole Moment Cation on Layered 2D Organic–Inorganic Halide Perovskite Solar Cells , 2018, Advanced Energy Materials.

[50]  N. Zheng,et al.  High-Efficiency, Hysteresis-Less, UV-Stable Perovskite Solar Cells with Cascade ZnO-ZnS Electron Transport Layer. , 2018, Journal of the American Chemical Society.

[51]  Kai Zhu,et al.  Suppressing defects through the synergistic effect of a Lewis base and a Lewis acid for highly efficient and stable perovskite solar cells , 2018 .

[52]  Yanfa Yan,et al.  Reducing Saturation‐Current Density to Realize High‐Efficiency Low‐Bandgap Mixed Tin–Lead Halide Perovskite Solar Cells , 2018, Advanced Energy Materials.

[53]  Kai Zhu,et al.  Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers , 2018, Nature Energy.

[54]  Yu‐Wu Zhong,et al.  Propeller-Shaped, Triarylamine-Rich, and Dopant-Free Hole-Transporting Materials for Efficient n-i-p Perovskite Solar Cells. , 2018, ACS applied materials & interfaces.

[55]  Yong Cao,et al.  Stable Sn/Pb-Based Perovskite Solar Cells with a Coherent 2D/3D Interface , 2018, iScience.

[56]  Yanchun Han,et al.  Optimizing film morphology and crystal orientation of perovskite for efficient planar-heterojunction solar cells by slowing crystallization process , 2018, Organic Electronics.

[57]  Jae Bum Jeon,et al.  Antisolvent with an Ultrawide Processing Window for the One‐Step Fabrication of Efficient and Large‐Area Perovskite Solar Cells , 2018, Advanced materials.

[58]  L. Quan,et al.  Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent , 2018, Nature.

[59]  Shangfeng Yang,et al.  Triple cation additive NH3+C2H4NH2+C2H4NH3+-induced phase-stable inorganic α-CsPbI3 perovskite films for use in solar cells , 2018 .

[60]  Zhike Liu,et al.  Low Temperature Fabrication for High Performance Flexible CsPbI2Br Perovskite Solar Cells , 2018, Advanced science.

[61]  T. Bovornratanaraks,et al.  The crucial role of density functional nonlocality and on-axis CH3NH3 rotation induced I2 formation in hybrid organic-inorganic CH3NH3PbI3 cubic perovskite , 2018, Scientific Reports.

[62]  E. Reichmanis,et al.  Modifying Perovskite Films with Polyvinylpyrrolidone for Ambient-Air-Stable Highly Bendable Solar Cells. , 2018, ACS applied materials & interfaces.

[63]  D. Cahen,et al.  Understanding how excess lead iodide precursor improves halide perovskite solar cell performance , 2018, Nature Communications.

[64]  F. Gao,et al.  Defects engineering for high-performance perovskite solar cells , 2018, npj Flexible Electronics.

[65]  G. Fang,et al.  A Lewis Base-Assisted Passivation Strategy Towards Highly Efficient and Stable Perovskite Solar Cells , 2018 .

[66]  Qing Peng,et al.  Improve the Stability of Hybrid Halide Perovskite via Atomic Layer Deposition on Activated Phenyl-C61 Butyric Acid Methyl Ester. , 2018, ACS applied materials & interfaces.

[67]  N. Park,et al.  Rear-Surface Passivation by Melaminium Iodide Additive for Stable and Hysteresis-less Perovskite Solar Cells. , 2018, ACS applied materials & interfaces.

[68]  Yong Cao,et al.  Interface Engineering for All‐Inorganic CsPbI2Br Perovskite Solar Cells with Efficiency over 14% , 2018, Advanced materials.

[69]  J. Zhang,et al.  Highly Stable Hybrid Perovskite Solar Cells Modified with Polyethylenimine via Ionic Bonding , 2018 .

[70]  J. Qiao,et al.  Ion‐Migration Inhibition by the Cation–π Interaction in Perovskite Materials for Efficient and Stable Perovskite Solar Cells , 2018, Advanced materials.

[71]  Jiantie Xu,et al.  Defects in metal triiodide perovskite materials towards high-performance solar cells: origin, impact, characterization, and engineering. , 2018, Chemical Society reviews.

[72]  S. Stupp,et al.  Enhanced Out-of-Plane Conductivity and Photovoltaic Performance in n = 1 Layered Perovskites through Organic Cation Design. , 2018, Journal of the American Chemical Society.

[73]  Jie Cao,et al.  Interstitial Occupancy by Extrinsic Alkali Cations in Perovskites and Its Impact on Ion Migration , 2018, Advanced materials.

[74]  Jianbin Xu,et al.  Fused‐Ring Electron Acceptor ITIC‐Th: A Novel Stabilizer for Halide Perovskite Precursor Solution , 2018 .

[75]  J. Bisquert,et al.  Quantification of Ionic Diffusion in Lead Halide Perovskite Single Crystals , 2018 .

[76]  Y. Qi,et al.  Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability , 2018 .

[77]  M. Grätzel,et al.  Phase Segregation in Potassium-Doped Lead Halide Perovskites from 39K Solid-State NMR at 21.1 T. , 2018, Journal of the American Chemical Society.

[78]  M. Ozaki,et al.  Triphenylamine-Thienothiophene Organic Charge-Transport Molecular Materials: Effect of Substitution Pattern on their Thermal, Photoelectrochemical, and Photovoltaic Properties. , 2018, Chemistry, an Asian journal.

[79]  L. Etgar,et al.  The Effect of the Alkylammonium Ligand’s Length on Organic–Inorganic Perovskite Nanoparticles , 2018 .

[80]  Hui Sun,et al.  Investigation on Enhanced Moisture Resistance of Two-Dimensional Layered Hybrid Organic–Inorganic Perovskites (C4H9NH3)2PbI4 , 2018 .

[81]  A. Zakhidov,et al.  Room-Temperature Continuous-Wave Operation of Organometal Halide Perovskite Lasers. , 2018, ACS nano.

[82]  B. Dunn,et al.  Tuning Molecular Interactions for Highly Reproducible and Efficient Formamidinium Perovskite Solar Cells via Adduct Approach. , 2018, Journal of the American Chemical Society.

[83]  H. Bolink,et al.  Vacuum Deposited Triple‐Cation Mixed‐Halide Perovskite Solar Cells , 2018 .

[84]  R. Munir,et al.  Stable High‐Performance Perovskite Solar Cells via Grain Boundary Passivation , 2018, Advanced materials.

[85]  Edward P. Booker,et al.  Maximizing and stabilizing luminescence from halide perovskites with potassium passivation , 2018, Nature.

[86]  Hongwei Zhu,et al.  Suppressing defects through thiadiazole derivatives that modulate CH3NH3PbI3 crystal growth for highly stable perovskite solar cells under dark conditions , 2018 .

[87]  Yang Yang,et al.  Efficient Planar Perovskite Solar Cells with Improved Fill Factor via Interface Engineering with Graphene. , 2018, Nano letters.

[88]  Longwei Yin,et al.  Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells , 2018, Nature Communications.

[89]  Yongli Gao,et al.  Argon Plasma Treatment to Tune Perovskite Surface Composition for High Efficiency Solar Cells and Fast Photodetectors , 2018, Advanced materials.

[90]  Wei Li,et al.  Strong Depletion in Hybrid Perovskite p–n Junctions Induced by Local Electronic Doping , 2018, Advanced materials.

[91]  P. Prasad,et al.  Enhanced fatigue resistance of suppressed hysteresis in perovskite solar cells by an organic crosslinker , 2018 .

[92]  W. Fang,et al.  Lewis Base Passivation of Hybrid Halide Perovskites Slows Electron-Hole Recombination: Time-Domain Ab Initio Analysis. , 2018, The journal of physical chemistry letters.

[93]  A. Ho-baillie,et al.  Passivation of Grain Boundaries by Phenethylammonium in Formamidinium-Methylammonium Lead Halide Perovskite Solar Cells , 2018 .

[94]  K. Yamashita,et al.  Revealing the Chemistry between Band Gap and Binding Energy for Lead-/Tin-Based Trihalide Perovskite Solar Cell Semiconductors. , 2018, ChemSusChem.

[95]  Seonhee Lee,et al.  Universal Approach toward Hysteresis-Free Perovskite Solar Cell via Defect Engineering. , 2018, Journal of the American Chemical Society.

[96]  Y. Loo,et al.  Influence of Solvent Coordination on Hybrid Organic–Inorganic Perovskite Formation , 2018 .

[97]  Giovanni Vladilo,et al.  Hydrogen Bonds and Life in the Universe , 2018, Life.

[98]  Joel S. Miller,et al.  Structures of a Complex Hydrazinium Lead Iodide, (N2 H5 )15 Pb3 I21 , Possessing [Pb2 I9 ]5- , [PbI6 ]4- , and I- Ions and α- and β-(N2 H5 )PbI3. , 2018, Chemistry.

[99]  Koichi Yamashita,et al.  Hybrid organic–inorganic CH3NH3PbI3 perovskite building blocks: Revealing ultra‐strong hydrogen bonding and mulliken inner complexes and their implications in materials design , 2017, J. Comput. Chem..

[100]  J. E. ten Elshof,et al.  Effect of Water Addition during Preparation on the Early-Time Photodynamics of CH3 NH3 PbI3 Perovskite Layers. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[101]  J. Wei,et al.  Perovskite Solar Cells Fabricated by Using an Environmental Friendly Aprotic Polar Additive of 1,3-Dimethyl-2-imidazolidinone , 2017, Nanoscale Research Letters.

[102]  Sungmin Park,et al.  Development of Dopant-Free Donor-Acceptor-type Hole Transporting Material for Highly Efficient and Stable Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[103]  Yu Cao,et al.  Benzylamine‐Treated Wide‐Bandgap Perovskite with High Thermal‐Photostability and Photovoltaic Performance , 2017 .

[104]  M. Kang,et al.  Highly flexible, high-performance perovskite solar cells with adhesion promoted AuCl3-doped graphene electrodes , 2017 .

[105]  Q. Meng,et al.  Fluorinated fused nonacyclic interfacial materials for efficient and stable perovskite solar cells , 2017 .

[106]  O. Kwon,et al.  Efficient and thermally stable inverted perovskite solar cells by introduction of non-fullerene electron transporting materials , 2017 .

[107]  Yanhong Luo,et al.  Investigation on the role of Lewis bases in the ripening process of perovskite films for highly efficient perovskite solar cells , 2017 .

[108]  Xuan Sun,et al.  Halide anion–fullerene π noncovalent interactions: n-doping and a halide anion migration mechanism in p–i–n perovskite solar cells , 2017 .

[109]  Furkan H. Isikgor,et al.  Factors Influencing the Mechanical Properties of Formamidinium Lead Halides and Related Hybrid Perovskites. , 2017, ChemSusChem.

[110]  L. Ci,et al.  Elucidating the Key Role of a Lewis Base Solvent in the Formation of Perovskite Films Fabricated from the Lewis Adduct Approach. , 2017, ACS applied materials & interfaces.

[111]  Shibin Li,et al.  Enhanced efficiency and environmental stability of planar perovskite solar cells by suppressing photocatalytic decomposition , 2017 .

[112]  M. Wasielewski,et al.  Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI3 , 2017, Science Advances.

[113]  Zongxiang Xu,et al.  Dopant-Free Hole-Transport Materials Based on Methoxytriphenylamine-Substituted Indacenodithienothiophene for Solution-Processed Perovskite Solar Cells. , 2017, ChemSusChem.

[114]  Yin Xiao,et al.  Tuning the crystal growth of perovskite thin-films by adding the 2-pyridylthiourea additive for highly efficient and stable solar cells prepared in ambient air , 2017 .

[115]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[116]  Jinsong Huang,et al.  Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations , 2017, Nature Energy.

[117]  G. Cui,et al.  Methylammonium-Mediated Evolution of Mixed-Organic-Cation Perovskite Thin Films: A Dynamic Composition-Tuning Process. , 2017, Angewandte Chemie.

[118]  M. Ikegami,et al.  Poly(4-Vinylpyridine)-Based Interfacial Passivation to Enhance Voltage and Moisture Stability of Lead Halide Perovskite Solar Cells. , 2017, ChemSusChem.

[119]  R. Mathies,et al.  Critical Role of Methylammonium Librational Motion in Methylammonium Lead Iodide (CH3NH3PbI3) Perovskite Photochemistry. , 2017, Nano letters.

[120]  Dongmei Li,et al.  A perylene diimide based polymer: a dual function interfacial material for efficient perovskite solar cells , 2017 .

[121]  Y. Takeoka,et al.  Orientation Control of Two-Dimensional Perovskites by Incorporating Carboxylic Acid Moieties , 2017, ACS omega.

[122]  Chunhui Huang,et al.  A Breakthrough Efficiency of 19.9% Obtained in Inverted Perovskite Solar Cells by Using an Efficient Trap State Passivator Cu(thiourea)I. , 2017, Journal of the American Chemical Society.

[123]  Seung Goo Lee,et al.  Enhancing the Durability and Carrier Selectivity of Perovskite Solar Cells Using a Blend Interlayer. , 2017, ACS applied materials & interfaces.

[124]  Dongqing He,et al.  Improved Performance and Reproducibility of Perovskite Solar Cells by Well-Soluble Tris(pentafluorophenyl)borane as a p-Type Dopant. , 2017, ACS applied materials & interfaces.

[125]  Rachel C. Kurchin,et al.  Searching for “Defect-Tolerant” Photovoltaic Materials: Combined Theoretical and Experimental Screening , 2017 .

[126]  Jinsong Huang,et al.  Spontaneous Passivation of Hybrid Perovskite by Sodium Ions from Glass Substrates: Mysterious Enhancement of Device Efficiency Revealed , 2017 .

[127]  G. Cao,et al.  Highly Efficient and Stable Perovskite Solar Cells Based on Monolithically Grained CH3NH3PbI3 Film , 2017 .

[128]  Huanping Zhou,et al.  High‐Mobility p‐Type Organic Semiconducting Interlayer Enhancing Efficiency and Stability of Perovskite Solar Cells , 2017, Advanced science.

[129]  Jinsong Huang,et al.  π‐Conjugated Lewis Base: Efficient Trap‐Passivation and Charge‐Extraction for Hybrid Perovskite Solar Cells , 2017, Advanced materials.

[130]  Kai Zhu,et al.  Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films , 2017, Nature Energy.

[131]  Yang Yang,et al.  Tailoring the Interfacial Chemical Interaction for High-Efficiency Perovskite Solar Cells. , 2017, Nano letters.

[132]  Y. Qi,et al.  Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour , 2016, Nature Energy.

[133]  Wei Geng,et al.  Phenylalkylamine Passivation of Organolead Halide Perovskites Enabling High‐Efficiency and Air‐Stable Photovoltaic Cells , 2016, Advanced materials.

[134]  Changli Li,et al.  Enhanced performance of perovskite solar cells by modulating the Lewis acid-base reaction. , 2016, Nanoscale.

[135]  Henk J. Bolink,et al.  Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers , 2016 .

[136]  J. Ball,et al.  Defects in perovskite-halides and their effects in solar cells , 2016, Nature Energy.

[137]  M. Nazeeruddin,et al.  PbI2-HMPA Complex Pretreatment for Highly Reproducible and Efficient CH3NH3PbI3 Perovskite Solar Cells. , 2016, Journal of the American Chemical Society.

[138]  Jingfa Li,et al.  First-Principles Study of Molecular Adsorption on Lead Iodide Perovskite Surface: A Case Study of Halogen Bond Passivation for Solar Cell Application , 2016 .

[139]  S. Sasaki,et al.  Dopant-Free Zinc Chlorophyll Aggregates as an Efficient Biocompatible Hole Transporter for Perovskite Solar Cells. , 2016, ChemSusChem.

[140]  Qingfeng Dong,et al.  Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene , 2016, Nature Communications.

[141]  Yan Yao,et al.  Interaction of Organic Cation with Water Molecule in Perovskite MAPbI3: From Dynamic Orientational Disorder to Hydrogen Bonding , 2016 .

[142]  L. Forró,et al.  CH3NH3PbI3: precise structural consequences of water absorption at ambient conditions. , 2016, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[143]  S. Zakeeruddin,et al.  Enhancing Efficiency of Perovskite Solar Cells via N‐doped Graphene: Crystal Modification and Surface Passivation , 2016, Advanced materials.

[144]  Oh Kyu Kwon,et al.  Indolo[3,2-b]indole-based crystalline hole-transporting material for highly efficient perovskite solar cells , 2016, Chemical science.

[145]  Yanfa Yan,et al.  Lead‐Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22% , 2016, Advanced materials.

[146]  Rebecca A. Belisle,et al.  Perovskite-perovskite tandem photovoltaics with optimized band gaps , 2016, Science.

[147]  Philip Schulz,et al.  Defect Tolerance in Methylammonium Lead Triiodide Perovskite , 2016 .

[148]  Z. Tian,et al.  Organic-inorganic interactions of single crystalline organolead halide perovskites studied by Raman spectroscopy. , 2016, Physical chemistry chemical physics : PCCP.

[149]  M. Green,et al.  Critical Role of Grain Boundaries for Ion Migration in Formamidinium and Methylammonium Lead Halide Perovskite Solar Cells , 2016 .

[150]  S. Zakeeruddin,et al.  A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells , 2016, Science.

[151]  Silvio C. E. Tosatto,et al.  The RING 2.0 web server for high quality residue interaction networks , 2016, Nucleic Acids Res..

[152]  D. Schlettwein,et al.  Stabilization of Organic-Inorganic Perovskite Layers by Partial Substitution of Iodide by Bromide in Methylammonium Lead Iodide. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[153]  Jinsong Huang,et al.  Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films , 2016 .

[154]  Dong Suk Kim,et al.  High Performance of Planar Perovskite Solar Cells Produced from PbI2(DMSO) and PbI2(NMP) Complexes by Intramolecular Exchange , 2016 .

[155]  Xiaofeng Wang,et al.  Multilayered Perovskite Materials Based on Polymeric-Ammonium Cations for Stable Large-Area Solar Cell , 2016 .

[156]  N. Park,et al.  Dual function interfacial layer for highly efficient and stable lead halide perovskite solar cells , 2016 .

[157]  R. Palgrave,et al.  On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system , 2016, Chemical science.

[158]  Heping Shen,et al.  Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[159]  G. Cui,et al.  The fabrication of formamidinium lead iodide perovskite thin films via organic cation exchange. , 2016, Chemical communications.

[160]  H. M. Jang,et al.  The nature of hydrogen-bonding interaction in the prototypic hybrid halide perovskite, tetragonal CH3NH3PbI3 , 2016, Scientific Reports.

[161]  Aram Amassian,et al.  Ligand-Stabilized Reduced-Dimensionality Perovskites. , 2016, Journal of the American Chemical Society.

[162]  L. Kronik,et al.  Hybrid Organic–Inorganic Perovskites on the Move , 2016, Accounts of chemical research.

[163]  Jae Kwan Lee,et al.  Efficient Hole-Transporting Materials with Triazole Core for High-Efficiency Perovskite Solar Cells. , 2016, Chemistry, an Asian journal.

[164]  Eman A. Gaml,et al.  Crystallization of a perovskite film for higher performance solar cells by controlling water concentration in methyl ammonium iodide precursor solution. , 2016, Nanoscale.

[165]  Yongbo Yuan,et al.  Ion Migration in Organometal Trihalide Perovskite and Its Impact on Photovoltaic Efficiency and Stability. , 2016, Accounts of chemical research.

[166]  N. Park,et al.  Lewis Acid-Base Adduct Approach for High Efficiency Perovskite Solar Cells. , 2016, Accounts of chemical research.

[167]  A. Walsh,et al.  What Is Moving in Hybrid Halide Perovskite Solar Cells? , 2016, Accounts of chemical research.

[168]  Y. Murata,et al.  Hole-Transporting Materials with a Two-Dimensionally Expanded π-System around an Azulene Core for Efficient Perovskite Solar Cells. , 2015, Journal of the American Chemical Society.

[169]  H. Snaith,et al.  Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors , 2015, 1511.06507.

[170]  Wolfgang Kowalsky,et al.  Water Infiltration in Methylammonium Lead Iodide Perovskite : Fast and Inconspicuous , 2015 .

[171]  K. P. Ong,et al.  Structural Evolution in Methylammonium Lead Iodide CH3NH3PbI3. , 2015, The journal of physical chemistry. A.

[172]  Qiyuan He,et al.  Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics , 2015, Science Advances.

[173]  Hwan-Kyu Kim,et al.  Novel Carbazole-Based Hole-Transporting Materials with Star-Shaped Chemical Structures for Perovskite-Sensitized Solar Cells. , 2015, ACS applied materials & interfaces.

[174]  G. Cui,et al.  Interface engineering for high-performance perovskite hybrid solar cells , 2015 .

[175]  E. Hoke,et al.  CH3NH3PbI3 perovskite single crystals: surface photophysics and their interaction with the environment , 2015, Chemical science.

[176]  Mohammad Khaja Nazeeruddin,et al.  Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. , 2015, Nature chemistry.

[177]  S. Tsang,et al.  Decomposition of Organometal Halide Perovskite Films on Zinc Oxide Nanoparticles. , 2015, ACS applied materials & interfaces.

[178]  A. Subbiah,et al.  Exploring Thermochromic Behavior of Hydrated Hybrid Perovskites in Solar Cells , 2015 .

[179]  Matthew R. Leyden,et al.  Large formamidinium lead trihalide perovskite solar cells using chemical vapor deposition with high reproducibility and tunable chlorine concentrations , 2015 .

[180]  A. Pucci,et al.  Infrared Spectroscopic Study of Vibrational Modes in Methylammonium Lead Halide Perovskites. , 2015, The journal of physical chemistry letters.

[181]  Nam-Gyu Park,et al.  Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. , 2015, Journal of the American Chemical Society.

[182]  M. Grätzel,et al.  The Significance of Ion Conduction in a Hybrid Organic-Inorganic Lead-Iodide-Based Perovskite Photosensitizer. , 2015, Angewandte Chemie.

[183]  Leeor Kronik,et al.  Theory of Hydrogen Migration in Organic–Inorganic Halide Perovskites , 2015, Angewandte Chemie.

[184]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[185]  Omar K Farha,et al.  2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications. , 2015, Journal of the American Chemical Society.

[186]  Timothy L. Kelly,et al.  Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO , 2015 .

[187]  D. Ginger,et al.  Impact of microstructure on local carrier lifetime in perovskite solar cells , 2015, Science.

[188]  Oleksandr Voznyy,et al.  Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes , 2015, Nature Communications.

[189]  Yuliang Zhang,et al.  Alternating precursor layer deposition for highly stable perovskite films towards efficient solar cells using vacuum deposition , 2015 .

[190]  Jenny Nelson,et al.  Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells , 2015 .

[191]  Tonio Buonassisi,et al.  Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites , 2015, 1504.02144.

[192]  Yanhong Luo,et al.  Efficient CH3NH3PbI3 Perovskite Solar Cells Based on Graphdiyne (GD)‐Modified P3HT Hole‐Transporting Material , 2015 .

[193]  Wenjun Zhang,et al.  Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells. , 2015, Nano letters.

[194]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[195]  T. Hansen,et al.  Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K. , 2015, Chemical communications.

[196]  K. Butler,et al.  Band alignment of the hybrid halide perovskites CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3 , 2015 .

[197]  T. Kamiya,et al.  Intrinsic defects in a photovoltaic perovskite variant Cs2SnI6. , 2015, Physical chemistry chemical physics : PCCP.

[198]  Tingting Shi,et al.  Superior Photovoltaic Properties of Lead Halide Perovskites: Insights from First-Principles Theory , 2015 .

[199]  Jeffrey A. Christians,et al.  Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. , 2015, Journal of the American Chemical Society.

[200]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[201]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[202]  Yang Yang,et al.  Moisture assisted perovskite film growth for high performance solar cells , 2014 .

[203]  Sabre Kais,et al.  Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3 , 2014, Nature Communications.

[204]  Anthony K. Cheetham,et al.  Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog , 2014 .

[205]  Shenghao Wang,et al.  High performance perovskite solar cells by hybrid chemical vapor deposition , 2014 .

[206]  Oleksandr Voznyy,et al.  Materials processing routes to trap-free halide perovskites. , 2014, Nano letters.

[207]  H. Zeng,et al.  Strong covalency-induced recombination centers in perovskite solar cell material CH3NH3PbI3. , 2014, Journal of the American Chemical Society.

[208]  Nakita K. Noel,et al.  Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites. , 2014, ACS nano.

[209]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[210]  Kun Zhang,et al.  Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition , 2014 .

[211]  Leeor Kronik,et al.  Role of Dispersive Interactions in Determining Structural Properties of Organic-Inorganic Halide Perovskites: Insights from First-Principles Calculations. , 2014, The journal of physical chemistry letters.

[212]  Mercouri G Kanatzidis,et al.  Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. , 2014, Journal of the American Chemical Society.

[213]  Seigo Ito,et al.  Effects of Surface Blocking Layer of Sb2S3 on Nanocrystalline TiO2 for CH3NH3PbI3 Perovskite Solar Cells , 2014 .

[214]  Konrad Wojciechowski,et al.  Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells. , 2014, Nano letters.

[215]  Sung-Hoon Lee,et al.  The Role of Intrinsic Defects in Methylammonium Lead Iodide Perovskite. , 2014, The journal of physical chemistry letters.

[216]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[217]  Yanfa Yan,et al.  Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber , 2014 .

[218]  Nam-Gyu Park,et al.  Organolead Halide Perovskite: New Horizons in Solar Cell Research , 2014 .

[219]  J. Dobson,et al.  Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH3NH3PbI3. , 2014, Physical chemistry chemical physics : PCCP.

[220]  Laura M Herz,et al.  High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites , 2013, Advanced materials.

[221]  Pierangelo Metrangolo,et al.  Definition of the halogen bond (IUPAC Recommendations 2013) , 2013 .

[222]  S. Alvarez A cartography of the van der Waals territories. , 2013, Dalton transactions.

[223]  Martin Schreyer,et al.  Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications , 2013 .

[224]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[225]  B. Iverson,et al.  Rethinking the term “pi-stacking” , 2012 .

[226]  G. Bazan,et al.  Fullerene-carbene Lewis acid-base adducts. , 2011, Journal of the American Chemical Society.

[227]  Daoben Zhu,et al.  Architecture of graphdiyne nanoscale films. , 2010, Chemical communications.

[228]  T. Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[229]  Xionggang Lu,et al.  Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. , 2008, Acta crystallographica. Section B, Structural science.

[230]  R. McLean,et al.  Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering , 2003 .

[231]  G. Gritzner A critical view on the Lewis-donor (nucleophilic) properties of solvents , 1997 .

[232]  Kun Ho Kim,et al.  Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering , 1997 .

[233]  Jie Yao,et al.  Preparation and Characterization of Fulleroid and Methanofullerene Derivatives , 1995 .

[234]  R. Haddon,et al.  The Fullerenes: The fullerenes: powerful carbon-based electron acceptors , 1993 .

[235]  Albrecht Poglitsch,et al.  Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopy , 1987 .

[236]  O. Knop,et al.  Cation rotation in methylammonium lead halides , 1985 .

[237]  T. Gramstad,et al.  Synthesis and vibrational spectra of some lead(II) halide adducts with O-, S-, and N-donor atom ligands , 1976 .

[238]  T. Ho Hard soft acids bases (HSAB) principle and organic chemistry , 1975 .

[239]  R. Pearson,et al.  Application of the Principle of Hard and Soft Acids and Bases to Organic Chemistry , 1967 .

[240]  V. Goldschmidt Krystallbau und chemische Zusammensetzung , 1927 .

[241]  Matthew R. Leyden,et al.  Combination of Hybrid CVD and Cation Exchange for Upscaling Cs‐Substituted Mixed Cation Perovskite Solar Cells with High Efficiency and Stability , 2018 .

[242]  S. H. Park,et al.  Controlled crystal facet of MAPbI3 perovskite for highly efficient and stable solar cell via nucleation modulation. , 2018, Nanoscale.

[243]  He Tian,et al.  Improved Efficiency and Stability of Perovskite Solar Cells Induced by CO Functionalized Hydrophobic Ammonium‐Based Additives , 2018, Advanced materials.

[244]  Qi Chen,et al.  Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. , 2016, Nature nanotechnology.

[245]  Yong Qiu,et al.  Study on the stability of CH3NH3PbI3films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells , 2014 .

[246]  David B. Mitzi,et al.  Templating and structural engineering in organic–inorganic perovskites , 2001 .

[247]  Christoph Janiak,et al.  A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands , 2000 .

[248]  W. Holzapfel,et al.  THE EFFECT OF PRESSURE ON THE RAMAN SPECTRUM OF NH4I , 1980 .

[249]  P. J. Anderson,et al.  Effects of water vapour on sintering of MgO , 1964 .