Geometry of p -adic Siegel discs
暂无分享,去创建一个
[1] Jonathan D. Lubin. One-Parameter Formal Lie Groups Over -Adic Integer Rings , 1964 .
[2] J. Tate,et al. Formal Complex Multiplication in Local Fields , 1965 .
[3] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[4] D. Saari,et al. Stable and Random Motions in Dynamical Systems , 1975 .
[5] Patrick J. McCarthy. The general exact bijective continuous solution of Feigenbaum's functional equation , 1983 .
[6] Robert S. MacKay,et al. Universal small-scale structure near the boundary of siegel disks of arbitrary rotation number , 1987 .
[7] N. Koblitz. A Course in Number Theory and Cryptography , 1987 .
[8] I. Percival,et al. Arithmetical properties of strongly chaotic motions , 1987 .
[9] Franco Vivaldi,et al. Ideal orbits of toral automorphisms , 1989 .
[10] E. Thiran,et al. p-adic dynamics , 1989 .
[11] E. Thiran,et al. Quantum mechanics on p-adic fields , 1989 .
[12] C. M. Place,et al. An Introduction to Dynamical Systems , 1990 .
[13] Alan F. Beardon,et al. Iteration of Rational Functions , 1991 .
[14] Franco Vivaldi,et al. Geometry of linear maps over finite fields , 1992 .
[15] F. Vivaldi. Dynamics over irreducible polynomials , 1992 .
[16] Algebraic Dynamics of Polynomial Maps on the Algebraic Closure of a Finite Field, II , 1994 .