Reliable spurious mode rejection using self learning algorithms

In this paper, we introduce a new technique for the separation of physical and spurious modes based on an initial clustering in frequency-damping space, followed by a self-learning classification algorithm. For the classification, Least Squares Support Vector Machines are used, a Least Squares version of the theory of Support Vector Machines which maps the classification problem to a high-dimensional feature space were the data points are linearly separable.

[1]  Bart De Moor,et al.  Subspace identification combined with new mode selection techniques for modal analysis of an airplane , 2003 .

[2]  H. Van der Auweraer,et al.  Structural dynamics modeling using modal analysis: applications, trends and challenges , 2001, IMTC 2001. Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference. Rediscovering Measurement in the Age of Informatics (Cat. No.01CH 37188).

[3]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[4]  Bart Peeters,et al.  System identification and damage detection in civil engineering , 2000 .

[5]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[6]  B. Moor,et al.  Subspace identification for linear systems , 1996 .

[7]  Bart Peeters,et al.  Tools to improve detection of structural changes from in-flight flutter data , 2003 .

[8]  A. Benveniste,et al.  Recursive output-only subspace identification for in-flight flutter monitoring , 2004 .

[9]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[10]  P. Van Overschee,et al.  Subspace algorithms for the stochastic identification problem , 1991 .

[11]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[12]  Bart De Moor,et al.  A unifying theorem for three subspace system identification algorithms , 1995, Autom..

[13]  B. Moor,et al.  Model reduction and energy analysis as a tool to detect spurious modes , 2002 .

[14]  E. Parloo,et al.  AUTONOMOUS STRUCTURAL HEALTH MONITORING—PART I: MODAL PARAMETER ESTIMATION AND TRACKING , 2002 .