The problem of blow-up in nonlinear parabolic equations

The course aims at presenting an introduction to the subject of singularity formation in nonlinear evolution problems usually known as blowup. In short, we are interested in the situation where, starting from a smooth initial configuration, and after a first period of classical evolution, the solution (or in some cases its derivatives) becomes infinite in finite time due to the cumulative effect of the nonlinearities. We concentrate on problems involving differential equations of parabolic type, or systems of such equations. A first part of the course introduces the subject and discusses the classical questions addressed by the blow-up theory. We propose a list of main questions that extends and hopefully updates on the existing literature. We also introduce extinction problems as a parallel subject. In the main bulk of the paper we describe in some detail the developments in which we have been involved in recent years, like rates of growth and pattern formation before blow-up, the characterization of complete blow-up, the occurrence of instantaneous blow-up (i.e., immediately after the initial moment) and the construction of transient blow-up patterns (peaking solutions), as well as similar questions for extinction. In a final part we have tried to give an idea of interesting lines of current research. The survey concludes with an extensive list of references. Due to the varied and intense activity in the field both aspects are partial, and reflect necessarily the authors' tastes.

[1]  Sam Howison,et al.  Complex variable methods in Hele–Shaw moving boundary problems , 1992, European Journal of Applied Mathematics.

[2]  Hermann Brunner,et al.  Blowup in diffusion equations: a survey , 1998 .

[3]  Andrea L. Bertozzi,et al.  Symmetric Singularity Formation in Lubrication-Type Equations for Interface Motion , 1996, SIAM J. Appl. Math..

[4]  Donald G. Aronson,et al.  Limit behaviour of focusing solutions to nonlinear diffusions , 1998 .

[5]  Paolo Bisegna,et al.  Blow-up of solutions of a nonlinear parabolic equation in damage mechanics , 1997 .

[6]  Luis A. Caffarelli,et al.  Interfaces with a corner point in one-dimensional porous medium flow , 1985 .

[7]  Jerry L. Bona,et al.  Dispersive Blowup of Solutions of Generalized Korteweg-de Vries Equations , 1993 .

[8]  A. Friedman,et al.  Blow-up of positive solutions of semilinear heat equations , 1985 .

[9]  Bob Palais,et al.  Blowup for nonlinear equations using a comparison principle in fourier space , 1988 .

[10]  Robert V. Kohn,et al.  Refined asymptotics for the blowup of ut –Δu = up , 1992 .

[11]  Andrew Alfred Lacey,et al.  Global, Unbounded Solutions to a Parabolic Equation , 1993 .

[12]  J. J. L. Velázquez,et al.  Asymptotic shape of cusp singularities in curve shortening , 1995 .

[13]  Minkyu Kwak,et al.  SELF-SIMILAR SOLUTIONS OF A SEMILINEAR HEAT EQUATION , 2004 .

[14]  D. E. Tzanetis,et al.  Asymptotic behaviour and blow-up of some unbounded solutions for a semilinear heat equation , 1996, Proceedings of the Edinburgh Mathematical Society.

[15]  Jong-Shenq Guo,et al.  Quenching profiles for one-dimensional semilinear heat equations , 1993 .

[16]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[17]  J. Bebernes,et al.  Final time blowup profiles for semilinear parabolic equations via center manifold theory , 1992 .

[18]  Wei-Ming Ni,et al.  On the asymptotic behavior of solutions of certain quasilinear parabolic equations , 1984 .

[19]  G. I. Barenblatt Scaling: Self-similarity and intermediate asymptotics , 1996 .

[20]  A. A. Samarskii,et al.  ON APPROXIMATE SELF-SIMILAR SOLUTIONS OF A CLASS OF QUASILINEAR HEAT EQUATIONS WITH A SOURCE , 1985 .

[21]  Hatem Zaag,et al.  Optimal estimates for blowup rate and behavior for nonlinear heat equations , 1998 .

[22]  L. M. Hocking,et al.  A nonlinear instability burst in plane parallel flow , 1972, Journal of Fluid Mechanics.

[23]  Avner Friedman,et al.  The blow-up surface for nonlinear wave equations with small spatial velocity , 1988 .

[24]  Howard A. Levine,et al.  Quenching on the boundary , 1993 .

[25]  Miguel A. Herrero,et al.  Singularity formation in the one-dimensional supercooled Stefan problem , 1996, European Journal of Applied Mathematics.

[26]  Stéphane Gerbi,et al.  Quenching for a One-Dimensional Fully Nonlinear Parabolic Equation in Detonation Theory , 2001, SIAM J. Appl. Math..

[27]  Sam Howison,et al.  Cusp development in free boundaries, and two-dimensional slow viscous flows , 1995 .

[28]  Papanicolaou,et al.  Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension. , 1988, Physical review. A, General physics.

[29]  A. S. Kalashnikov Some problems of the qualitative theory of non-linear degenerate second-order parabolic equations , 1987 .

[30]  B. Sherman A general one-phase Stefan problem , 1970 .

[31]  F. Merle,et al.  Existence of self-similar blow-up solutions for Zakhrov equation in dimension two. Part I , 1994 .

[32]  Daniel B. Henry,et al.  Some infinite-dimensional Morse-Smale systems defined by parabolic partial differential equations , 1985 .

[33]  Luis A. Caffarelli,et al.  How an Initially Stationary Interface Begins to Move in Porous Medium Flow , 1983 .

[34]  S. Angenent,et al.  Degenerate neckpinches in mean curvature flow. , 1997 .

[35]  Hiroshi Tanaka,et al.  On the growing up problem for semilinear heat equations , 1977 .

[36]  Howard A. Levine,et al.  Quenching for Quasilinear Equations , 1992 .

[37]  I. M. Gel'fand,et al.  Some problems in the theory of quasilinear equations , 1987 .

[38]  Zhouping Xin,et al.  Blowup of smooth solutions to the compressible Navier‐Stokes equation with compact density , 1998 .

[39]  Miguel A. Herrero,et al.  Blow-up behaviour of one-dimensional semilinear parabolic equations , 1993 .

[40]  Sigurd B. Angenent,et al.  The focusing problem for the radially symmetric porous medium equation , 1995 .

[41]  Hayato Nawa,et al.  ASYMPTOTIC AND LIMITING PROFILES OF BLOWUP SOLUTIONS OF THE NONLINEAR SCHRODINGER EQUATION WITH CRITICAL POWER , 1999 .

[42]  Juan J. L. Velázquez,et al.  Cusp formation for the undercooled Stefan problem in two and three dimensions , 1997, European Journal of Applied Mathematics.

[43]  Philippe Souplet,et al.  Uniform Blow-Up Profiles and Boundary Behavior for Diffusion Equations with Nonlocal Nonlinear Source , 1999 .

[44]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[45]  S. P. Kurdiumov,et al.  Nonlinear processes in a dense plasma , 1976 .

[46]  Howard A. Levine,et al.  Global Existence and Nonexistence Theorems for Quasilinear Evolution Equations of Formally Parabolic Type , 1998 .

[47]  Avner Friedman,et al.  Blow-up of solutions of nonlinear degenerate parabolic equations , 1986 .

[48]  Avner Friedman,et al.  Differentiability of the blow-up curve for one dimensional nonlinear wave equations , 1985 .

[49]  Yoshikazu Giga,et al.  A single point blow-up for solutions of semilinear parabolic systems , 1987 .

[50]  Jerome A. Goldstein,et al.  THE HEAT EQUATION WITH A SINGULAR POTENTIAL , 1984 .

[51]  Howard A. Levine,et al.  A general approach to critical Fujita exponents in nonlinear parabolic problems , 1998 .

[52]  A. A. Samarskii,et al.  The architecture of multidimensional thermal structures , 1984 .

[53]  Victor A. Galaktionov,et al.  Blow-up of a class of solutions with free boundaries for the Navier-Stokes equations , 1999, Advances in Differential Equations.

[54]  Serge Alinhac Blowup of small data solutions for a quasilinear wave equation in two space dimensions. , 1999 .

[55]  A. I. Vol'pert,et al.  Analysis in classes of discontinuous functions and equations of mathematical physics , 1985 .

[56]  Chris Budd,et al.  Stability and spectra of blow–up in problems with quasi–linear gradient diffusivity , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[57]  Howard A. Levine,et al.  Stabilization of solutions of weakly singular quenching problems , 1993 .

[58]  Victor A. Galaktionov,et al.  On new exact blow-up solutions for nonlinear heat conduction equations with source and applications , 1990, Differential and Integral Equations.

[59]  Stefka Dimova,et al.  Numerical analysis of radically nonsymmetric blow-up solutions of a nonlinear parabolic problem , 1998 .

[60]  Victor A. Galaktionov,et al.  Rate of Approach to a Singular Steady State in Quasilinear Reaction-Diffusion Equations , 1998 .

[61]  Sam Howison,et al.  Singularity development in moving-boundary problems , 1985 .

[62]  Howard A. Levine,et al.  Quenching, nonquenching, and beyond quenching for solution of some parabolic equations , 1989 .

[63]  M. Bertsch,et al.  Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation , 1995 .

[64]  Andrea L. Bertozzi,et al.  Singularities in a modified Kuramoto-Sivashinsky equation describing interface motion for phase transition , 1995 .

[65]  Lambertus A. Peletier,et al.  Asymptotic Behaviour near Finite-Time Extinction for the Fast Diffusion Equation , 1997 .

[66]  P Baras,et al.  Complete blow-up after Tmax for the solution of a semilinear heat equation , 1987 .

[67]  Yoshikazu Giga Interior derivative blow-up for quasilinear parabolic equations , 1995 .

[68]  Yoshikazu Giga,et al.  Characterizing Blow-up Using Similarity Variables , 1985 .

[69]  Hiroshi Matano,et al.  Finite-point extinction and continuity of interfaces in a nonlinear diffusion equation with strong absorption. , 1995 .

[70]  J. J. L. Velázquez,et al.  Classification of singularities for blowing up solutions in higher dimensions , 1993 .

[71]  Luis A. Caffarelli,et al.  A free-boundary problem for the heat equation arising in flame propagation , 1995 .

[72]  Victor A. Galaktionov,et al.  Asymptotic behaviour of nonlinear parabolic equations with critical exponents. A dynamical systems approach , 1991 .

[73]  V. A. Galaktionov,et al.  The space structure near a blow-up point for semilinear heat equations: a formal approach , 1992 .

[74]  Lawrence E. Payne,et al.  Nonexistence of global weak solutions for classes of nonlinear wave and parabolic equations , 1976 .

[75]  V. A. Galaktionov,et al.  Conditions for global non-existence and localization of solutions of the cauchy problem for a class of non-linear parabolic equations , 1983 .

[76]  Victor A. Galaktionov,et al.  Blow-up for quasilinear heat equations with critical Fujita's exponents , 1994, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[77]  Fred B. Weissler,et al.  Single point blow-up for a semilinear initial value problem , 1984 .

[78]  Masayoshi Tsutsumi,et al.  Existence and Nonexistence of Global Solutions for Nonlinear Parabolic Equations , 1972 .

[79]  Yvan Martel,et al.  Complete blow up and global behaviour of solutions of ut - Δu = g(u) , 1998 .

[80]  Francisco Bernis,et al.  A very singular solution for the dual porous medium equation and the asymptotic behaviour of general solutions. , 1993 .

[81]  S. P. Kurdyumov,et al.  EVOLUTION AND SELF-ORGANIZATION LAWS IN COMPLEX SYSTEMS , 1990 .

[82]  Daniel Philips,et al.  Existence of solutions of quenching problems , 1987 .

[83]  A. P. Mikhailov,et al.  Thermal structures and fundamental length in a medium with nonlinear heat conduction and volumetric heat sources , 1976 .

[84]  Victor A. Galaktionov,et al.  Continuation of blowup solutions of nonlinear heat equations in several space dimensions , 1997 .

[85]  John Buckmaster,et al.  Mathematical Problems in Combustion , 1993 .

[86]  F. Merle,et al.  Concentration properties of blow-up solutions and instability results for Zakharov equation in dimension two. Part II , 1994 .

[87]  Miguel A. Herrero,et al.  Approaching an extinction point in one-dimensional semilinear heat equations with strong absorption , 1992 .

[88]  Hideo Kawarada,et al.  On Solutions of Nonlinear Wave Equations , 1971 .

[89]  W. Walter Differential and Integral Inequalities , 1970 .

[90]  J. Vázquez,et al.  Blow-Up for Quasilinear Heat Equations Described by Means of Nonlinear Hamilton–Jacobi Equations , 1996 .

[91]  D. Joseph,et al.  Quasilinear Dirichlet problems driven by positive sources , 1973 .

[92]  Debora Amadori Unstable blow-up patterns , 1995 .

[93]  M. Gage,et al.  The heat equation shrinking convex plane curves , 1986 .

[94]  Juan Luis Vázquez,et al.  Domain of existence and blowup for the exponential reaction-diffusion equation , 1999 .

[95]  Manuel del Pino,et al.  On the blow-up set for u_t=du^m+u^m, m>1 , 1998 .

[96]  Avner Friedman,et al.  The blow-up boundary for nonlinear wave equations , 1986 .

[97]  A. Galaktionov,et al.  Incomplete blow-up and singular interfaces for quasilinear heat equations , 1997 .

[98]  J. Escher,et al.  Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation , 1998 .

[99]  Alberto Bressan,et al.  Stable blow-up patterns , 1992 .

[100]  Kantaro Hayakawa,et al.  On Nonexistence of Global Solutions of Some Semilinear Parabolic Differential Equations , 1973 .

[101]  A. A. Samarskii,et al.  The burning of a nonlinear medium in the form of complex structures , 1977 .

[102]  Juan Luis Vázquez,et al.  Self-similar turbulent bursts: existence and analytic dependence , 1995, Differential and Integral Equations.

[103]  E Weinan,et al.  BLOWUP OF SOLUTIONS OF THE UNSTEADY PRANDTL'S EQUATION , 1997 .

[104]  Marek Fila,et al.  Interior gradient blow-up in a semilinear parabolic equation , 1996 .

[105]  J. Velázquez,et al.  Estimates on the (n−1)-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation , 1992 .

[106]  J. Vázquez,et al.  On the stability or instability of the singular solution of the semilinear heat equation with exponential reaction term , 1995 .

[107]  H. Fujita On the blowing up of solutions fo the Cauchy problem for u_t=Δu+u^ , 1966 .

[108]  Hiroshi Matano,et al.  Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations , 1989 .

[109]  Victor A. Galaktionov,et al.  SECOND-ORDER INTERFACE EQUATIONS FOR NONLINEAR DIFFUSION WITH VERY STRONG ABSORPTION , 1999 .

[110]  P. Souganidis,et al.  Blow-Up of solutions of hamilton-jacobi equations , 1986 .

[111]  Victor A. Galaktionov,et al.  Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities , 1995, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[112]  Victor A. Galaktionov,et al.  Extinction for a quasilinear heat equation with absorption I. Technique of intersection comparison , 1994 .

[113]  Andrew M. Stuart,et al.  Blowup in a Partial Differential Equation with Conserved First Integral , 1993, SIAM J. Appl. Math..

[114]  Noemi Wolanski,et al.  Global existence and nonexistence for a parabolic system with nonlinear boundary conditions , 1998, Differential and Integral Equations.

[115]  D. Aronson,et al.  Multidimensional nonlinear di u-sion arising in population genetics , 1978 .

[116]  V. A. Galaktionov,et al.  The conditions for there to be no global solutions of a class of quasilinear parabolic equations , 1982 .

[117]  Howard A. Levine,et al.  Some nonexistence and instability theorems for solutions of formally parabolic equations of the form Put=−Au+ℱ(u) , 1973 .

[118]  Antonio Fasano,et al.  Some remarks on the regularization of supercooled one-phase Stefan problems in one dimension , 1990 .

[119]  Josephus Hulshof,et al.  Extinction and focusing behaviour of spherical and annular flames described by a free boundary problem , 1997 .

[120]  Kyûya Masuda Analytic solutions of some nonlinear diffusion equations , 1984 .

[121]  A. P. Mikhailov,et al.  Blow-Up in Quasilinear Parabolic Equations , 1995 .

[122]  Victor A. Galaktionov,et al.  Regional blow up in a semilinear heat equation with convergence to a Hamilton-Jacobi equation , 1993 .

[123]  Masahito Ohta Blowup of solutions of dissipative nonlinear wave equations , 1997 .

[124]  F. W. Warner,et al.  Curvature Functions for Compact 2-Manifolds , 1974 .

[125]  Kosuke Ono,et al.  GLOBAL EXISTENCE, DECAY, AND BLOWUP OF SOLUTIONS FOR SOME MILDLY DEGENERATE NONLINEAR KIRCHHOFF STRINGS , 1997 .

[126]  Jerrold Bebernes,et al.  Mathematical Problems from Combustion Theory , 1989 .

[127]  Mario Primicerio,et al.  Stefan-like problems , 1993 .

[128]  Robert Kersner,et al.  On degenerate diffusion with very strong absorption , 1992 .

[129]  A. A. Samarskii,et al.  HEAT LOCALIZATION EFFECTS IN PROBLEMS OF ICF (INERTIAL CONFINEMENT FUSION) , 1995 .

[130]  James G. Berryman,et al.  Stability of the separable solution for fast diffusion , 1980 .

[131]  J. Dold ANALYSIS OF THE EARLY STAGE OF THERMAL RUNAWAY. , 1985 .

[132]  Panagiotis E. Souganidis,et al.  Singularities and uniqueness of cylindrically symmetric surfaces moving by mean curvature , 1993 .

[133]  Howard A. Levine,et al.  On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary , 1996 .

[134]  Andrew Alfred Lacey,et al.  Complete blow-up for a semilinear diffusion equation with a sufficiently large initial condition , 1988 .

[135]  J. Vázquez,et al.  Necessary and sufficient conditions for complete blow-up and extinction for one-dimensional quasilinear heat equations , 1995 .

[136]  Daniele Andreucci,et al.  Liouville theorems and blow up behaviour in semilinear reaction diffusion systems , 1997 .

[137]  Sam Howison,et al.  Hele-Shaw free-boundary problems with suction , 1988 .

[138]  M. Herrero,et al.  Explosion de solutions d'équations paraboliques semilinéaires supercritiques , 1994 .

[139]  V A Galaktionov,et al.  ON THE METHOD OF STATIONARY STATES FOR QUASILINEAR PARABOLIC EQUATIONS , 1990 .

[140]  Yue Liu,et al.  Existence and blow up of solutions of a nonlinear Pochhammer-Chree equation , 1996 .