F-perceptory: an approach for handling fuzziness of spatiotemporal data in geographical databases

In the literature, several studies have focused on introducing fuzzy extensions to the relational and/or object database models in order to store the imprecision. Indeed, on one hand, fuzzy EER and fuzzy UML are both applied for fuzzy object-oriented database modelling. On the other hand, Fuzzy ER is adapted for fuzzy relational database models. All these previous fuzzy conceptual modelling methods are not adapted to fuzzy spatiotemporal data. In this paper, we propose an approach for modelling imprecise data in object and relational databases based on the representation of data using connected and normalised fuzzy sets stored via α-cuts. The approach is applied to geographical information systems in order to handle imprecise spatiotemporal data.

[1]  Erlend Tøssebro,et al.  An Advanced Discrete Model for Uncertain Spatial Data , 2002, WAIM.

[2]  Eliseo Clementini,et al.  A model for uncertain lines , 2005, J. Vis. Lang. Comput..

[3]  Didier Dubois,et al.  Fuzziness and Uncertainty in Temporal Reasoning , 2003, J. Univers. Comput. Sci..

[4]  Guoqing Chen,et al.  Extending ER/EER concepts towards fuzzy conceptual data modeling , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[5]  Michael F. Worboys,et al.  Imprecision in Finite Resolution Spatial Data , 1998, GeoInformatica.

[6]  S. Spaccapietra,et al.  MADS: un modèle conceptuel pour des applicationsspatio-temporelles , 1997 .

[7]  Srdjan Skrbic,et al.  Towards the methodology for development of fuzzy relational database applications , 2011, Comput. Sci. Inf. Syst..

[8]  P. Smets IMPRECISION AND UNCERTAINTY IN INFORMATION SYSTEMS , 1996 .

[9]  P. Burrough,et al.  Geographic Objects with Indeterminate Boundaries , 1996 .

[10]  L. Rokach,et al.  A methodology for the design of a fuzzy data warehouse , 2008, 2008 4th International IEEE Conference Intelligent Systems.

[11]  Zongmin Ma Fuzzy Information Modeling with the UML , 2005 .

[12]  A. Comber,et al.  Approaches to Uncertainty in Spatial Data , 2010 .

[13]  François Pinet,et al.  Qualified topological relations between spatial objects with possible vague shape , 2009, Int. J. Geogr. Inf. Sci..

[14]  Eliseo Clementini,et al.  Integration of Imperfect Spatial Information , 2001, J. Vis. Lang. Comput..

[15]  Markus Schneider,et al.  Uncertainty Management for Spatial Data in Databases: Fuzzy Spatial Data Types , 1999, SSD.

[16]  Gupta Pankaj,et al.  Database Design for Storage of Fuzzy Information in Traditional Database , 2011 .

[17]  Y. Bédard VISUAL MODELLING OF SPATIAL DATABASES: TOWARDS SPATIAL PVL AND UML , 1999 .

[18]  Marek J. Druzdzel,et al.  Explanation in Probabilistic Systems: Is It Feasible? Will It Work? , 2001 .

[19]  A. Miralles Ingénierie des modèles pour les applications environnementales , 2006 .

[20]  Xavier Rodier,et al.  Modélisation des objets urbains pour l'étude des dynamiques urbaines dans la longue durée , 2007 .

[21]  Peter P. Chen,et al.  Entity — Relationship modeling and fuzzy databases , 1986, 1986 IEEE Second International Conference on Data Engineering.

[22]  Robert LIN,et al.  NOTE ON FUZZY SETS , 2014 .

[23]  Eliseo Clementini,et al.  A spatial model for complex objects with a broad boundary supporting queries on uncertain data , 2001, Data Knowl. Eng..

[24]  Gregory Vert,et al.  Extending ERD modeling notation to fuzzy management of GIS data files , 2002, Data Knowl. Eng..

[25]  Herman Akdag,et al.  Through a Fuzzy Spatiotemporal Information System for Handling Excavation Data , 2012, AGILE Conf..

[26]  Mario Piattini,et al.  Relaxing constraints in enhanced entity-relationship models using fuzzy quantifiers , 2004, IEEE Transactions on Fuzzy Systems.

[27]  Patrick Bosc,et al.  SQLf: a relational database language for fuzzy querying , 1995, IEEE Trans. Fuzzy Syst..

[28]  Nadeem Salamat,et al.  Two-Dimensional Fuzzy Spatial Relations: A New Way of Computing and Representation , 2012, Adv. Fuzzy Syst..

[29]  Zongmin Ma,et al.  A Literature Overview of Fuzzy Conceptual Data Modeling , 2010, J. Inf. Sci. Eng..

[30]  Herman Akdag,et al.  Vers la construction d'un observatoire des pratiques agricoles : gestion et propagation de l'imprécision des données agronomiques , 2012, EGC.

[31]  Stefano Spaccapietra,et al.  Uncertainty of Geographic Information and its Support in MADS , 2003 .

[32]  Uniuersita di L'Aquila An Algebraic Model for Spatial Objects with Indeterminate Boundaries , 2012 .

[33]  Anthony G. Cohn,et al.  The ‘Egg-Yolk’ Representation of Regions with Indeterminate Boundaries , 2020 .

[34]  B. Bouchon-Meunier,et al.  La logique floue et ses applications , 1995 .

[35]  Eliseo Clementini,et al.  Approximate topological relations , 1997, Int. J. Approx. Reason..

[36]  Zongmin Ma,et al.  Conceptual design of fuzzy object‐oriented databases using extended entity‐relationship model , 2001, Int. J. Intell. Syst..

[37]  Daniel Pacholczyk,et al.  A qualitative theory of uncertainty , 1992, Fundam. Informaticae.

[38]  Patrick Bosc,et al.  SQLf Query Functionality on Top of a Regular Relational Database Management System , 2000 .

[39]  Markus Schneider,et al.  Vague Regions , 1997, SSD.

[40]  Asma Zoghlami Modélisation et conception de systèmes d’information géographique gérant l’imprécision , 2013 .

[41]  Markus Schneider Modeling Spatial Objects with Undetermined Boundaries Using the Realm/ROSE Approach1 , 1996 .

[42]  Jingyu Yang,et al.  Rough Fuzzy Set in Incomplete Fuzzy Information System Based on Similarity Dominance Relation , 2009 .

[43]  Yvan Bédard,et al.  Modeling Geospatial Databases with Plug-Ins for Visual Languages: A Pragmatic Approach and the Impacts of 16 Years of Research and Experimentations on Perceptory , 2004, ER.