Sparsity Invariance for Convex Design of Distributed Controllers

We address the problem of designing optimal linear time-invariant (LTI) sparse controllers for LTI systems, which corresponds to minimizing a norm of the closed-loop system subjected to sparsity constraints on the controller structure. This problem is NP-hard in general and motivates the development of tractable approximations. We characterize a class of convex restrictions based on a new notion of sparsity invariance (SI). The underlying idea of SI is to design sparsity patterns for transfer matrices <inline-formula><tex-math notation="LaTeX">$\mathbf {Y}(s)$</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">$\mathbf {X}(s)$</tex-math></inline-formula> such that any corresponding controller <inline-formula><tex-math notation="LaTeX">$\mathbf {K}(s)=\mathbf {Y}(s)\mathbf {X}(s)^{-1}$</tex-math></inline-formula> exhibits the desired sparsity pattern. For sparsity constraints, the approach of SI goes beyond the notion of quadratic invariance (QI): 1) the SI approach always yields a convex restriction and 2) the solution via the SI approach is guaranteed to be globally optimal when QI holds and performs at least, considering the nearest QI subset. Moreover, the notion of SI naturally applies to designing structured static controllers, while QI is not utilizable. Numerical examples show that even for non-QI cases, SI can recover solutions that are: 1) globally optimal and 2) strictly more performing than previous methods.

[1]  Nikolai Matni,et al.  A System-Level Approach to Controller Synthesis , 2016, IEEE Transactions on Automatic Control.

[2]  Maryam Kamgarpour,et al.  Robust Distributed Control Beyond Quadratic Invariance , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[3]  Leiba Rodman,et al.  Algebraic Riccati equations , 1995 .

[4]  Sanjay Lall,et al.  A Characterization of Convex Problems in Decentralized Control$^ast$ , 2005, IEEE Transactions on Automatic Control.

[5]  Nikolai Matni Communication Delay Co-Design in $\mathcal{ H}_{2}$-Distributed Control Using Atomic Norm Minimization , 2017, IEEE Transactions on Control of Network Systems.

[6]  Javad Lavaei,et al.  Convex Relaxation for Optimal Distributed Control Problems , 2014, IEEE Transactions on Automatic Control.

[7]  Maryam Kamgarpour,et al.  On Separable Quadratic Lyapunov Functions for Convex Design of Distributed Controllers , 2019, ArXiv.

[8]  I. Postlethwaite,et al.  Linear Matrix Inequalities in Control , 2007 .

[9]  John N. Tsitsiklis,et al.  A survey of computational complexity results in systems and control , 2000, Autom..

[10]  Siddharth Sridhar,et al.  Cyber–Physical System Security for the Electric Power Grid , 2012, Proceedings of the IEEE.

[11]  A. Papachristodoulou,et al.  Convex Design of Structured Controllers using Block-Diagonal Lyapunov Functions , 2017, 1709.00695.

[12]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[13]  Maryam Kamgarpour,et al.  Robust Distributed Control Beyond Quadratic Invariance , 2018, CDC 2018.

[14]  Emanuel Todorov,et al.  Convex Structured Controller Design in Finite Horizon , 2015, IEEE Transactions on Control of Network Systems.

[15]  Mario Sznaier,et al.  Convex Optimization Approaches to Information Structured Decentralized Control , 2018, IEEE Transactions on Automatic Control.

[16]  Nuno C. Martins,et al.  Youla-Like Parametrizations Subject to QI Subspace Constraints , 2014, IEEE Transactions on Automatic Control.

[17]  Maryam Kamgarpour,et al.  Distributed Design for Decentralized Control Using Chordal Decomposition and ADMM , 2017, IEEE Transactions on Control of Network Systems.

[18]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[19]  Michael Chertkov,et al.  Sparsity-Promoting Optimal Wide-Area Control of Power Networks , 2013, IEEE Transactions on Power Systems.

[20]  Zhi-Quan Luo,et al.  An ADMM algorithm for optimal sensor and actuator selection , 2014, 53rd IEEE Conference on Decision and Control.

[21]  Maryam Kamgarpour,et al.  On the Equivalence of Youla, System-Level, and Input–Output Parameterizations , 2019, IEEE Transactions on Automatic Control.

[22]  Maryam Kamgarpour,et al.  An Input–Output Parametrization of Stabilizing Controllers: Amidst Youla and System Level Synthesis , 2019, IEEE Control Systems Letters.

[23]  Nuno C. Martins,et al.  Information structures in optimal decentralized control , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[24]  H. Witsenhausen A Counterexample in Stochastic Optimum Control , 1968 .

[25]  Antonis Papachristodoulou,et al.  Layered decomposition for the model order reduction of timescale separated biochemical reaction networks. , 2014, Journal of theoretical biology.

[26]  M. Rotkowitz,et al.  Q-Parametrization and an SDP for H∞-optimal Decentralized Control , 2013 .

[27]  Dante C. Youla,et al.  Modern Wiener-Hopf Design of Optimal Controllers. Part I , 1976 .

[28]  Stephen P. Boyd,et al.  Linear controller design: limits of performance , 1991 .

[29]  B. Francis,et al.  A Course in H Control Theory , 1987 .

[30]  Pedro Luis Dias Peres,et al.  Decentralized control through parameter space optimization , 1994, Autom..

[31]  Yang Zheng,et al.  Distributed Model Predictive Control for Heterogeneous Vehicle Platoons Under Unidirectional Topologies , 2016, IEEE Transactions on Control Systems Technology.

[32]  J.F. Lafay,et al.  Feedback realization of precompensators for linear systems with delays , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[33]  Christos Papadimitriou,et al.  Intractable problems in control theory , 1985, 1985 24th IEEE Conference on Decision and Control.

[34]  S. Lall,et al.  Quadratic invariance is necessary and sufficient for convexity , 2011, Proceedings of the 2011 American Control Conference.

[35]  Fu Lin,et al.  Design of Optimal Sparse Feedback Gains via the Alternating Direction Method of Multipliers , 2011, IEEE Transactions on Automatic Control.

[36]  C. Scherer An efficient solution to multi-objective control problems with LMI objectives , 2000 .

[37]  Manfred Morari,et al.  Distributed synthesis and control of constrained linear systems , 2012, 2012 American Control Conference (ACC).

[38]  Alborz Alavian,et al.  Stabilizing decentralized systems with arbitrary information structure , 2014, 53rd IEEE Conference on Decision and Control.

[39]  Arno Linnemann,et al.  Convergent Ritz approximations of the set of stabilizing controllers , 1999 .

[40]  J. Sherman,et al.  Adjustment of an Inverse Matrix Corresponding to a Change in One Element of a Given Matrix , 1950 .

[41]  Nuno C. Martins,et al.  On the Nearest Quadratically Invariant Information Constraint , 2011, IEEE Transactions on Automatic Control.

[42]  Venkat Chandrasekaran,et al.  Regularization for Design , 2014, IEEE Transactions on Automatic Control.