Comparison of feature selection methods using ANNs in MCP-wind speed methods. A case study

Recent studies in the field of renewable energies, and specifically in wind resource prediction, have shown growing interest in proposals for Measure–Correlate–Predict (MCP) methods which simultaneously use data recorded at various reference weather stations. In this context, the use of a high number of reference stations may result in overspecification with its associated negative effects. These include, amongst others, an increase in the estimation error and/or overfitting which could be detrimental to the generalisation capacity of the model when handling new data (prediction).

[1]  E. Pitman Significance Tests Which May be Applied to Samples from Any Populations , 1937 .

[2]  D. Fadare The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria , 2010 .

[3]  Ralph B. D'Agostino,et al.  Goodness-of-Fit-Techniques , 2020 .

[4]  Hiroshi Motoda,et al.  Computational Methods of Feature Selection , 2022 .

[5]  Mark A. Hall,et al.  Correlation-based Feature Selection for Machine Learning , 2003 .

[6]  Vaughn Nelson,et al.  Wind Resource Assessment , 2013 .

[7]  K. Klink Trends and Interannual Variability of Wind Speed Distributions in Minnesota , 2002 .

[8]  Jake Badger,et al.  Wind Resource Estimation—An Overview , 2003 .

[9]  James F. Manwell,et al.  Comparison of the performance of four measure–correlate–predict algorithms , 2005 .

[10]  Robert V. Brill,et al.  Applied Statistics and Probability for Engineers , 2004, Technometrics.

[11]  Sungmoon Jung,et al.  Weighted error functions in artificial neural networks for improved wind energy potential estimation , 2013 .

[12]  José M. Matías,et al.  Use of Bayesian networks classifiers for long-term mean wind turbine energy output estimation at a potential wind energy conversion site , 2011 .

[13]  C. G. Justus,et al.  Interannual and Month-to-Month Variations of Wind Speed , 1978 .

[14]  M. Bilgili,et al.  Application of artificial neural networks for the wind speed prediction of target station using reference stations data , 2007 .

[15]  J. A. Carta,et al.  Comparison between ANNs and linear MCP algorithms in the long-term estimation of the cost per kWh produced by a wind turbine at a candidate site: A case study in the Canary Islands , 2011 .

[16]  J. A. Carta,et al.  A new probabilistic method to estimate the long-term wind speed characteristics at a potential wind , 2011 .

[17]  Yoshua Bengio,et al.  Scaling learning algorithms towards AI , 2007 .

[18]  Mark A. Hall,et al.  Correlation-based Feature Selection for Discrete and Numeric Class Machine Learning , 1999, ICML.

[19]  Bri-Mathias Hodge,et al.  A hybrid measure-correlate-predict method for long-term wind condition assessment , 2014 .

[20]  Livio Casella Improving Long-Term Wind Speed Assessment using Joint Probability Functions Applied to Three Wind Data Sets , 2012 .

[21]  Rory A. Fisher,et al.  The Design of Experiments. , 1936 .

[22]  Nikhil R. Pal,et al.  Feature Selection Using a Neural Framework With Controlled Redundancy , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[23]  W. T. Pennell,et al.  The siting handbook for large wind energy systems , 1981 .

[24]  Jay L. Devore,et al.  Probability and statistics for engineering and the sciences , 1982 .

[25]  Ahmet Öztopal,et al.  Artificial neural network approach to spatial estimation of wind velocity data , 2006 .

[26]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[27]  Michael C. Brower,et al.  Wind Resource Assessment: A Practical Guide to Developing a Wind Project , 2012 .

[28]  Stel Nathan Walker,et al.  Annual and seasonal variations in mean wind speed and wind turbine energy production , 1990 .

[29]  C. Willmott,et al.  A refined index of model performance , 2012 .

[30]  Kenneth J. Berry,et al.  A Chronicle of Permutation Statistical Methods , 2014 .

[31]  P. López,et al.  Effect of direction on wind speed estimation in complex terrain using neural networks , 2008 .

[32]  Eric R. Ziegel,et al.  Probability and Statistics for Engineering and the Sciences , 2004, Technometrics.

[33]  P. Good Permutation, Parametric, and Bootstrap Tests of Hypotheses , 2005 .

[34]  Pat Langley,et al.  Selection of Relevant Features and Examples in Machine Learning , 1997, Artif. Intell..

[35]  Ian Witten,et al.  Data Mining , 2000 .

[36]  N. Fisher,et al.  A correlation coefficient for circular data , 1983 .

[37]  Jochen Twele,et al.  Wind Power Plants , 2002 .

[38]  K. V. Mardia,et al.  Linear-Circular Correlation Coefficients and Rhythmometry , 1976 .

[39]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[40]  O. Probst,et al.  State of the Art and Trends in Wind Resource Assessment , 2010 .

[41]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[42]  J. P. Deane,et al.  Wind resource assessment of an area using short term data correlated to a long term data set , 2004 .

[43]  Soteris A. Kalogirou,et al.  Artificial neural networks in renewable energy systems applications: a review , 2001 .

[44]  J. I The Design of Experiments , 1936, Nature.

[45]  J. A. Carta,et al.  A review of measure-correlate-predict (MCP) methods used to estimate long-term wind characteristics at a target site , 2013 .

[46]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[47]  R. Johnson,et al.  Measures and models for angular correlation and angular-linear correlation. [correlation of random variables] , 1976 .

[48]  Mohammad Monfared,et al.  A new strategy for wind speed forecasting using artificial intelligent methods , 2009 .

[49]  K. Gnana Sheela,et al.  Review on Methods to Fix Number of Hidden Neurons in Neural Networks , 2013 .

[50]  José M. Matías,et al.  Influence of the input layer signals of ANNs on wind power estimation for a target site: A case study , 2011 .

[51]  Allan Pinkus,et al.  Multilayer Feedforward Networks with a Non-Polynomial Activation Function Can Approximate Any Function , 1991, Neural Networks.

[52]  Pramod Jain,et al.  Wind Energy Engineering , 2010 .

[53]  Ron Kohavi,et al.  Wrappers for Feature Subset Selection , 1997, Artif. Intell..

[54]  N. Fisher,et al.  Statistical Analysis of Circular Data , 1993 .

[55]  R. D'Agostino,et al.  Goodness-of-Fit-Techniques , 1987 .