A Cell-Centered Adaptive Projection Method for the Incompressible Euler Equations

We present an algorithm to compute adaptive solutions for incompressible flows using block-structured local refinement in both space and time. This method uses a projection formulation based on a cell-centered approximate projection, which allows the use of a single set of cell-centered solvers. Because of refinement in time, additional steps are taken to accurately discretize the advection and projection operators at grid refinement boundaries using composite operators which span the coarse and refined grids. This ensures that the method is approximately freestream preserving and satisfies an appropriate form of the divergence constraint.

[1]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[2]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[3]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[4]  Eva Farkas,et al.  General Purpose Compositional Model , 1985 .

[5]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[6]  J. Ferziger,et al.  An adaptive multigrid technique for the incompressible Navier-Stokes equations , 1989 .

[7]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[8]  John A. Trangenstein,et al.  Mathematical structure of the black-oil model for petroleum reservoir simulation , 1989 .

[9]  P. Colella Multidimensional upwind methods for hyperbolic conservation laws , 1990 .

[10]  Phillip Colella,et al.  An efficient second-order projection method for viscous incompressible flow , 1991 .

[11]  Isidore Rigoutsos,et al.  An algorithm for point clustering and grid generation , 1991, IEEE Trans. Syst. Man Cybern..

[12]  John B. Bell,et al.  A projection method for combustion in the zero Mach number limit , 1993 .

[13]  M. Minion,et al.  Two methods for the study of vortex patch evolution on locally refined grids , 1994 .

[14]  J. Koseff,et al.  A non-staggered grid, fractional step method for time-dependent incompressible Navier-Stokes equations in curvilinear coordinates , 1994 .

[15]  P. Colella,et al.  A Fast Adaptive Vortex Method in Three Dimensions , 1994 .

[16]  M. Minion,et al.  Performance of Under-resolved Two-Dimensional Incompressible Flow , 1995 .

[17]  John B. Bell,et al.  Cartesian grid method for unsteady compressible flow in irregular regions , 1995 .

[18]  P. Colella,et al.  A Cell-Centered Cartesian Grid Projection Method for the Incompressible Euler Equations in Complex G , 1995 .

[19]  Daniel F. Martin,et al.  Solving Poisson's Equation using Adaptive Mesh Renemen t , 1996 .

[20]  M. Minion A Projection Method for Locally Refined Grids , 1996 .

[21]  John B. Bell,et al.  A Numerical Method for the Incompressible Navier-Stokes Equations Based on an Approximate Projection , 1996, SIAM J. Sci. Comput..

[22]  John B. Bell,et al.  An Adaptive Mesh Projection Method for Viscous Incompressible Flow , 1997, SIAM J. Sci. Comput..

[23]  John B. Bell,et al.  A Cartesian Grid Projection Method for the Incompressible Euler Equations in Complex Geometries , 1994, SIAM J. Sci. Comput..

[24]  Richard D. Hornung,et al.  Adaptive Mesh Refinement and Multilevel Iteration for Flow in Porous Media , 1997 .

[25]  Phillip Colella,et al.  Numerical modeling of a trickle bed reactor , 1998 .

[26]  Marcus S. Day,et al.  Embedded Boundary Algorithms for Solving the Poisson Equation on Complex Domains , 1998 .

[27]  P. Colella,et al.  A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations , 1998 .

[28]  P. Colella,et al.  A Cartesian Grid Embedded Boundary Method for Poisson's Equation on Irregular Domains , 1998 .

[29]  John B. Bell,et al.  Approximate Projection Methods: Part I. Inviscid Analysis , 2000, SIAM J. Sci. Comput..