Toward optical quantum information processing with quantum dots coupled to microstructures [Invited]

Major improvements have been made on semiconductor quantum dot light sources recently and now they can be seen as a serious candidate for near-future scalable photonic quantum information processing experiments. The three key parameters of these photon sources for such applications have been pushed to extreme values: almost unity single-photon purity and photon indistinguishability, and high brightness. In this paper, we review the progress achieved recently on quantum-dot-based single-photon sources. We also review some quantum information experiments where entanglement processes are achieved using semiconductor quantum dots.

[1]  Jeremy L O'Brien,et al.  Measuring two-qubit gates , 2007 .

[2]  E. Togan,et al.  Observation of entanglement between a quantum dot spin and a single photon , 2012, Nature.

[3]  A Lemaître,et al.  Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography. , 2008, Physical review letters.

[4]  Ian Farrer,et al.  Two-photon interference of the emission from electrically tunable remote quantum dots , 2010 .

[5]  Christian Schneider,et al.  Near-Transform-Limited Single Photons from an Efficient Solid-State Quantum Emitter. , 2016, Physical review letters.

[6]  Marco Barbieri,et al.  Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis , 2010, 1012.1868.

[7]  G. Solomon,et al.  Substrate temperature and monolayer coverage effects on epitaxial ordering of InAs and InGaAs islands on GaAs , 1995 .

[8]  Benson,et al.  Regulated and entangled photons from a single quantum Dot , 2000, Physical review letters.

[9]  Eberhard,et al.  Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[10]  H. Weinfurter,et al.  Entangling Photons Radiated by Independent Pulsed Sources a , 1995 .

[11]  Nicolò Spagnolo,et al.  Experimental validation of photonic boson sampling , 2014, Nature Photonics.

[12]  Christian Schneider,et al.  Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency. , 2015, Optics express.

[13]  Yoshihisa Yamamoto,et al.  Indistinguishable photons from a single-photon device , 2002, Nature.

[14]  A. Lemaître,et al.  Time-resolved probing of the Purcell effect for InAs quantum boxes in GaAs microdisks , 2001 .

[15]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[16]  N. Gisin,et al.  Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication , 1999 .

[17]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[18]  J. J. Finley,et al.  Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals , 2005 .

[19]  C. Bostedt,et al.  Femtosecond photoelectron diffraction on laser-aligned molecules: Towards time-resolved imaging of molecular structure , 2013 .

[20]  D. Ritchie,et al.  Controlled-NOT gate operating with single photons , 2012, 1205.4899.

[21]  R. H. Brown,et al.  Correlation between Photons in two Coherent Beams of Light , 1956, Nature.

[22]  N. Gregersen,et al.  A highly efficient single-photon source based on a quantum dot in a photonic nanowire , 2010 .

[23]  Teich,et al.  Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics. , 1989, Physical review. A, General physics.

[24]  V. Zwiller,et al.  Bright single-photon sources in bottom-up tailored nanowires , 2012, Nature Communications.

[25]  A. Lemaître,et al.  Indistinguishable single photons generated by a quantum dot under resonant excitation observable without postselection , 2014 .

[26]  H. Weinfurter,et al.  Linear optics controlled-phase gate made simple. , 2005, Physical Review Letters.

[27]  D. Branning,et al.  Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source , 2002, quant-ph/0205140.

[28]  Yamamoto,et al.  Spontaneous-emission coupling factor and mode characteristics of planar dielectric microcavity lasers. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[29]  Jian-Wei Pan,et al.  On-demand semiconductor single-photon source with near-unity indistinguishability. , 2012, Nature nanotechnology.

[30]  J. Cirac,et al.  Quantum repeaters based on entanglement purification , 1998, quant-ph/9808065.

[31]  Marco Fiorentino,et al.  Deterministic controlled-NOT gate for single-photon two-qubit quantum logic. , 2004, Physical review letters.

[32]  A. Wieck,et al.  Charge noise and spin noise in a semiconductor quantum device , 2013, Nature Physics.

[33]  G. Solomon,et al.  Atom-resolved scanning tunneling microscopy of vertically ordered InAs quantum dots , 1997 .

[34]  Andrew M. Childs,et al.  Universal Computation by Multiparticle Quantum Walk , 2012, Science.

[35]  Gregor Weihs,et al.  Time-bin entangled photons from a quantum dot , 2008, Nature Communications.

[36]  Otfried Gühne,et al.  Investigating Three Qubit Entanglement with Local Measurements , 2003 .

[37]  M. P. Almeida,et al.  Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source. , 2013, Physical review letters.

[38]  E. Costard,et al.  Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity , 1998 .

[39]  G. Solomon,et al.  Resolved sideband emission of InAs/GaAs quantum dots strained by surface acoustic waves. , 2010, Physical review letters.

[40]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[41]  M. Bichler,et al.  Two-photon Rabi oscillations in a single In x Ga 1 − x As ∕ Ga As quantum dot , 2006 .

[42]  C. Voisin,et al.  Optically gated resonant emission of single quantum dots. , 2011, Physical review letters.

[43]  D. Ritchie,et al.  A semiconductor source of triggered entangled photon pairs , 2006, Nature.

[44]  H. Takesue,et al.  Efficient entanglement distribution over 200 kilometers. , 2009, Optics express.

[45]  V. Sazonova,et al.  Deterministic emitter-cavity coupling using a single-site controlled quantum dot , 2010 .

[46]  D. Englund,et al.  Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. , 2005, Physical review letters.

[47]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[48]  I. Sagnes,et al.  Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity , 2005 .

[49]  N. Gisin,et al.  Long distance quantum teleportation in quantum relay configuration , 2003, 2003 European Quantum Electronics Conference. EQEC 2003 (IEEE Cat No.03TH8665).

[50]  H. Rigneault,et al.  Far-field radiation from quantum boxes located in pillar microcavities. , 2001, Optics letters.

[51]  T. Rudolph,et al.  Resource-efficient linear optical quantum computation. , 2004, Physical review letters.

[52]  Yanwen Wu,et al.  Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling. , 2007, Physical review letters.

[53]  A. Badolato,et al.  Bright Single-Photon Emission From a Quantum Dot in a Circular Bragg Grating Microcavity , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[54]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[55]  Y. Yamamoto,et al.  Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity. , 2001, Physical review letters.

[56]  P. Yeh,et al.  Electromagnetic propagation in periodic stratified media. I. General theory , 1977 .

[57]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[58]  K. Blaum,et al.  Comment on "Intruder configurations in the A=33 isobars: 33Mg and 33Al". , 2010, Physical review letters.

[59]  G. Solomon,et al.  Emission spectrum of a dressed exciton-biexciton complex in a semiconductor quantum dot. , 2008, Physical review letters.

[60]  P. Lodahl,et al.  Interfacing single photons and single quantum dots with photonic nanostructures , 2013, 1312.1079.

[61]  H. Weinfurter,et al.  Multiphoton entanglement and interferometry , 2003, 0805.2853.

[62]  Keiji Sasaki,et al.  Demonstration of an optical quantum controlled-NOT gate without path interference. , 2005, Physical review letters.

[63]  P. Henrard,et al.  Measurement of the $\Lambda_b^0$, $\Xi_b^-$ and $\Omega_b^-$ baryon masses , 2013, 1302.1072.

[64]  I. Shelykh,et al.  Catching the bound states in the continuum of a phantom atom in graphene , 2015, 1503.01451.

[65]  E. Costard,et al.  Quantum boxes as active probes for photonic microstructures: The pillar microcavity case , 1996 .

[66]  H. Weinfurter,et al.  Experimental Entanglement Swapping: Entangling Photons That Never Interacted , 1998 .

[67]  A. Lemaître,et al.  Evidence for confined tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission. , 2011, Physical review letters.

[68]  Yoshihisa Yamamoto,et al.  Efficient source of single photons: a single quantum dot in a micropost microcavity. , 2002 .

[69]  A Lemaître,et al.  Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. , 2004, Physical review letters.

[70]  D. Ritchie,et al.  Improved fidelity of triggered entangled photons from single quantum dots , 2006, quant-ph/0601187.

[71]  Larry A. Coldren,et al.  High-frequency single-photon source with polarization control , 2007 .

[72]  Hiroki Takesue,et al.  Implementation of quantum state tomography for time-bin entangled photon pairs. , 2009, Optics express.

[73]  N. Gisin,et al.  Long-distance entanglement swapping with photons from separated sources , 2004, quant-ph/0409093.

[74]  Edo Waks,et al.  A quantum logic gate between a solid-state quantum bit and a photon , 2013 .

[75]  J. O'Brien,et al.  On the experimental verification of quantum complexity in linear optics , 2013, Nature Photonics.

[76]  B. Gerardot,et al.  Entangled photon pairs from semiconductor quantum dots. , 2005, Physical Review Letters.

[77]  A. Wieck,et al.  Transform-limited single photons from a single quantum dot , 2013, Nature Communications.

[78]  W. Moerner,et al.  Single photons on demand from a single molecule at room temperature , 2000, Nature.

[79]  G. Solomon,et al.  Dynamics of nonclassical light from a single solid-state quantum emitter. , 2012, Physical review letters.

[80]  G. Solomon,et al.  Interference of single photons from two separate semiconductor quantum dots. , 2010, Physical review letters.

[81]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[82]  Jean-Michel Gérard,et al.  Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities , 1999 .

[83]  J. Verbaarschot,et al.  Induced violation of time-reversal invariance in the regime of weakly overlapping resonances. , 2009, Physical review letters.

[84]  O. Schmidt,et al.  Highly entangled photons from hybrid piezoelectric-semiconductor quantum dot devices. , 2014, Nano letters.

[85]  M. Kamp,et al.  Two-photon interference from remote quantum dots with inhomogeneously broadened linewidths , 2014 .

[86]  Jian-Wei Pan,et al.  On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar. , 2016, Physical review letters.

[87]  Jaesuk Hwang,et al.  Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence , 2007, 0707.3398.

[88]  I. Sagnes,et al.  Scalable performance in solid-state single-photon sources , 2016, 1601.00654.

[89]  G. Weihs,et al.  Deterministic photon pairs and coherent optical control of a single quantum dot. , 2012, Physical review letters.

[90]  A Forchel,et al.  Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity. , 2009, Physical review letters.

[91]  R. E. Hall,et al.  Search for the Higgs boson in H --> WW(*) decays in pp collisions at square root of 1.96 TeV. , 2005, Physical review letters.

[92]  Marco Genovese,et al.  Mode reconstruction of a light field by multiphoton statistics , 2013 .

[93]  J. Mørk,et al.  Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a Gaussian optical beam. , 2013, Physical review letters.

[94]  A. Lemaître,et al.  Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000 , 2012 .

[95]  D. Ritchie,et al.  Evolution of entanglement between distinguishable light states. , 2008, Physical review letters.

[96]  Andrew G. White,et al.  Photonic Boson Sampling in a Tunable Circuit , 2012, Science.

[97]  On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide , 2011, 1201.3475.

[98]  Philippe Lalanne,et al.  Inhibition, enhancement, and control of spontaneous emission in photonic nanowires. , 2011, Physical review letters.

[99]  V. Kulakovskii,et al.  Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.

[100]  Y. Yamamoto,et al.  Triggered single photons from a quantum dot. , 2001, Physical review letters.

[101]  M. J. Fitch,et al.  Experimental controlled-NOT logic gate for single photons in the coincidence basis , 2003, quant-ph/0303095.

[102]  J D Franson,et al.  High-fidelity quantum logic operations using linear optical elements. , 2002, Physical review letters.

[103]  B. J. Metcalf,et al.  Boson Sampling on a Photonic Chip , 2012, Science.

[104]  I. Sagnes,et al.  Deterministic and electrically tunable bright single-photon source , 2014, Nature Communications.

[105]  Pierre M. Petroff,et al.  Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes , 2005, Science.

[106]  A. Lemaître,et al.  Macroscopic rotation of photon polarization induced by a single spin , 2014, Nature Communications.

[107]  M Kamp,et al.  Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments. , 2012, Physical review letters.

[108]  I. Sagnes,et al.  Cavity-enhanced two-photon interference using remote quantum dot sources , 2015, 1505.07382.

[109]  H Germany,et al.  Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide. , 2008, Physical review letters.

[110]  Wolfgang Tittel,et al.  Time-bin entangled qubits for quantum communication created by femtosecond pulses , 2002 .

[111]  Kartik Srinivasan,et al.  Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission , 2015, Nature Communications.

[112]  B. Lanyon,et al.  Towards quantum chemistry on a quantum computer. , 2009, Nature chemistry.

[113]  R. Brouri,et al.  Photon antibunching in the fluorescence of individual color centers in diamond. , 2000, Optics letters.

[114]  Glenn S. Solomon,et al.  Coupling an epitaxial quantum dot to a fiber-based external-mirror microcavity , 2009, 0910.4658.

[115]  S. Reitzenstein,et al.  In situ electron-beam lithography of deterministic single-quantum-dot mesa-structures using low-temperature cathodoluminescence spectroscopy , 2013, 1304.3631.

[116]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[117]  D. DiVincenzo,et al.  Quantum information is physical , 1997, cond-mat/9710259.

[118]  Christian Schneider,et al.  Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage. , 2014, Nano letters.

[119]  N. K. Langford,et al.  Linear optical controlled- NOT gate in the coincidence basis , 2002 .

[120]  Grilli,et al.  High-precision determination of the temperature dependence of the fundamental energy gap in gallium arsenide. , 1992, Physical review. B, Condensed matter.

[121]  C. Simon,et al.  Creating single time-bin-entangled photon pairs. , 2004, Physical review letters.

[122]  Andrea Benaglia,et al.  Transverse-Momentum and Pseudorapidity Distributions of Charged Hadrons in pp Collisions at root s=7 TeV , 2010 .

[123]  Isabelle Sagnes,et al.  Ultrabright source of entangled photon pairs , 2010, Nature.

[124]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[125]  S. Burger,et al.  Enhanced photon-extraction efficiency from deterministic quantum-dot microlenses , 2013, 1312.6298.

[126]  T. Ralph,et al.  Demonstration of an all-optical quantum controlled-NOT gate , 2003, Nature.

[127]  K J Resch,et al.  Demonstration of a simple entangling optical gate and its use in bell-state analysis. , 2005, Physical review letters.

[128]  Samuelson,et al.  Optical studies of individual InAs quantum dots in GaAs: few-particle effects , 1998, Science.

[129]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[130]  O. Schmidt,et al.  Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots. , 2013, Nano letters.

[131]  E. Togan,et al.  Quantum teleportation from a propagating photon to a solid-state spin qubit , 2013, Nature Communications.

[132]  J. Song,et al.  Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. , 2014, Physical review letters.

[133]  Christian Kurtsiefer,et al.  Stable Solid-State Source of Single Photons , 2000 .

[134]  L. J. Sham,et al.  Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon. , 2012, Physical review letters.

[135]  C. Weisbuch,et al.  Impact of planar microcavity effects on light extraction-Part I: basic concepts and analytical trends , 1998 .

[136]  B. Dubertret,et al.  Towards non-blinking colloidal quantum dots. , 2008, Nature materials.

[137]  S. Seidelin,et al.  Surface effects in a semiconductor photonic nanowire and spectral stability of an embedded single quantum dot , 2011, 1112.3733.

[138]  W. E. Moerner,et al.  Photon antibunching in single CdSe/ZnS quantum dot fluorescence , 2000 .

[139]  P. Michler,et al.  On-demand generation of indistinguishable polarization-entangled photon pairs , 2013, 1308.4257.

[140]  J. Lloyd‐Hughes,et al.  Influence of nonmagnetic Zn substitution on the lattice and magnetoelectric dynamical properties of the multiferroic material CuO , 2014 .

[141]  T Honjo,et al.  Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors. , 2007, Optics express.

[142]  I. Sagnes,et al.  Near-optimal single-photon sources in the solid state , 2015, Nature Photonics.

[143]  S. Gulde,et al.  Quantum nature of a strongly coupled single quantum dot–cavity system , 2007, Nature.

[144]  I. Sagnes,et al.  Bright solid-state sources of indistinguishable single photons , 2013, Nature Communications.

[145]  T. Rudolph,et al.  Optically generated 2-dimensional photonic cluster state from coupled quantum dots , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[146]  A. Lemaître,et al.  Single photon source using confined Tamm plasmon modes , 2012 .

[147]  Christian Schneider,et al.  Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength , 2012, Nature.

[148]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[149]  E. Kapon,et al.  Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[150]  Jean-Michel Gérard,et al.  A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar , 2002 .

[151]  F Schmidt,et al.  Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography , 2015, Nature Communications.

[152]  Gunnar Björk,et al.  Improved light extraction from emitters in high refractive index materials using solid immersion lenses , 2002 .

[153]  P. Lodahl,et al.  Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity , 2014, 1402.6967.