Neutron-proton scattering with lattice chiral effective field theory at next-to-next-to-next-to-leading order

We present a new lattice formulation of chiral effective field theory interactions with a simpler decomposition into spin channels. With these interactions the process of fitting to the empirical scattering phase shifts is simplified, and the resulting lattice phase shifts are more accurate than in previous studies. We present results for the neutron-proton system up to next-to-next-to-next-to-leading order for lattice spacings of $1.97~{\rm fm}$, $1.64~{\rm fm}$, $1.32~{\rm fm}$, and $0.99~{\rm fm}$. Our results provide a pathway to $\textit{ab initio}$ lattice calculations of nuclear structure, reactions, and thermodynamics with accurate and systematic control over the chiral nucleon-nucleon force.

[1]  Dean Lee,et al.  The Tjon band in Nuclear Lattice Effective Field Theory , 2018, The European Physical Journal A.

[2]  E. Epelbaum,et al.  Semilocal momentum-space regularized chiral two-nucleon potentials up to fifth order , 2017, 1711.08821.

[3]  Dean Lee,et al.  Neutron-proton scattering at next-to-next-to-leading order in Nuclear Lattice Effective Field Theory , 2017, 1702.05319.

[4]  Ning Li,et al.  Ab initio Calculations of the Isotopic Dependence of Nuclear Clustering. , 2017, Physical review letters.

[5]  Dean Lee,et al.  Nucleon-deuteron scattering using the adiabatic projection method , 2016, 1603.02333.

[6]  Ning Li,et al.  Nuclear Binding Near a Quantum Phase Transition. , 2016, Physical review letters.

[7]  Dean Lee,et al.  Precise determination of lattice phase shifts and mixing angles , 2015, 1506.05652.

[8]  Dean Lee,et al.  Ab initio alpha–alpha scattering , 2015, Nature.

[9]  R. Furnstahl,et al.  Quantifying truncation errors in effective field theory , 2015, 1506.01343.

[10]  E. Epelbaum,et al.  Precision Nucleon-Nucleon Potential at Fifth Order in the Chiral Expansion. , 2014, Physical review letters.

[11]  E. Epelbaum,et al.  Improved chiral nucleon-nucleon potential up to next-to-next-to-next-to-leading order , 2014, The European Physical Journal A.

[12]  D. R. Entem,et al.  Peripheral nucleon-nucleon scattering at fifth order of chiral perturbation theory , 2014, 1411.5335.

[13]  R. Furnstahl,et al.  A recipe for EFT uncertainty quantification in nuclear physics , 2014, 1407.0657.

[14]  Dean Lee,et al.  Ab initio calculation of the spectrum and structure of (16)O. , 2013, Physical review letters.

[15]  Evgeny Epelbaum,et al.  Structure and rotations of the Hoyle state. , 2012, Physical review letters.

[16]  Evgeny Epelbaum,et al.  Ab initio calculation of the Hoyle state. , 2011, Physical review letters.

[17]  Dean Lee Lattice simulations for few- and many-body systems , 2008, 0804.3501.

[18]  E. Epelbaum,et al.  Chiral effective field theory on the lattice at next-to-leading order , 2007, 0712.2990.

[19]  Dean Lee,et al.  Temperature-dependent errors in nuclear lattice simulations , 2007, nucl-th/0701048.

[20]  H. Hammer,et al.  Modern theory of nuclear forces , 2004, 0811.1338.

[21]  E. Epelbaum,et al.  The Two-nucleon system at next-to-next-to-next-to-leading order , 2004, nucl-th/0405048.

[22]  Theodor W. Hänsch,et al.  HYDROGEN-DEUTERIUM 1S-2S ISOTOPE SHIFT AND THE STRUCTURE OF THE DEUTERON , 1998 .

[23]  Stoks,et al.  Partial-wave analysis of all nucleon-nucleon scattering data below 350 MeV. , 1993, Physical review. C, Nuclear physics.

[24]  Steven Weinberg,et al.  Nuclear forces from chiral Lagrangians , 1990 .

[25]  Knutson,et al.  Asymptotic D-state to S-state ratio of the deuteron. , 1990, Physical review. C, Nuclear physics.

[26]  M. Rosa-Clot,et al.  The deuteron asymptotic D-state as a probe of the nucleon-nucleon force , 1983 .

[27]  C. V. D. Leun,et al.  The deuteron binding energy , 1982 .

[28]  D. M. Bishop,et al.  Quadrupole moment of the deuteron from a precise calculation of the electric field gradient in D-2 , 1979 .

[29]  J. Friar Measurability of the deuteron D state probability , 1979 .

[30]  Eugene P. Wigner,et al.  On the Consequences of the Symmetry of the Nuclear Hamiltonian on the Spectroscopy of Nuclei , 1937 .

[31]  W. Marsden I and J , 2012 .

[32]  R. Koch,et al.  Compilation of Coupling Constants and Low-Energy Parameters. 1982 Edition , 1983 .

[33]  N. Metropolis,et al.  Phase shift analysis of 310-MeV proton proton scattering experiments , 1957 .