Quantum Correlation Based on Uhlmann Fidelity for Gaussian States

A quantum correlation NFG,A for (n+m)-mode continuous-variable systems is introduced in terms of local Gaussian unitary operations performed on Subsystem A based on Uhlmann fidelity F. This quantity is a remedy for the local ancilla problem associated with the geometric measurement-induced correlations; is local Gaussian unitary invariant; is non-increasing under any Gaussian quantum channel performed on Subsystem B;and is an entanglement monotone when restricted to pure Gaussian states in the (1+m)-mode case. A concrete formula for (1+1)-mode symmetric squeezed thermal states (SSTSs) is presented. We also compare NFG,A with other quantum correlations in scale, such as Gaussian quantum discord and Gaussian geometric discord, for two-mode SSTSs, which reveals that NFG,A has some advantage in detecting quantum correlations of Gaussian states.

[1]  Xiaolong Su Applying Gaussian quantum discord to quantum key distribution , 2013, 1310.4253.

[2]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[3]  Davide Girolami,et al.  Quantum Discord Determines the Interferometric Power of Quantum States , 2013, 1309.1472.

[4]  M. Hayashi,et al.  Quantum information with Gaussian states , 2007, 0801.4604.

[5]  Yangyang Wang,et al.  Quantum correlations for bipartite continuous-variable systems , 2018, Quantum Inf. Process..

[6]  GAUSSIAN GEOMETRIC DISCORD , 2011, 1110.2532.

[7]  Yangyang Wang,et al.  Nonclassicality by Local Gaussian Unitary Operations for Gaussian States , 2018, Entropy.

[8]  J Eisert,et al.  Fidelity Witnesses for Fermionic Quantum Simulations. , 2017, Physical review letters.

[9]  Seth Lloyd,et al.  Fidelity decay as an efficient indicator of quantum chaos. , 2002, Physical review letters.

[10]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[11]  S. Giampaolo,et al.  Discord of response , 2014, 1401.8243.

[12]  Cirac,et al.  Inseparability criterion for continuous variable systems , 1999, Physical review letters.

[13]  Seth Lloyd,et al.  Correlation matrices of two-mode bosonic systems , 2009, 0902.1502.

[14]  S. Camalet-N. Canosa,et al.  Computing quantum discord is NP-complete , 2013, ArXiv.

[15]  N. Langford,et al.  Distance measures to compare real and ideal quantum processes (14 pages) , 2004, quant-ph/0408063.

[16]  J. Hou,et al.  Measurement-induced Nonlocality for Gaussian States , 2017 .

[17]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[18]  A. De Pasquale,et al.  Discriminating strength: a bona fide measure of non-classical correlations , 2014, 1402.2870.

[19]  N. Paunkovi'c,et al.  Dynamical phase transitions at finite temperature from fidelity and interferometric Loschmidt echo induced metrics , 2017, 1712.01314.

[20]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[21]  A. Datta,et al.  Quantum versus classical correlations in Gaussian states. , 2010, Physical review letters.

[22]  Experimental characterization of continuous-variable entanglement , 2003, quant-ph/0309013.

[23]  Fidelity of states in infinite-dimensional quantum systems , 2011, 1107.0354.

[24]  Stefano Pirandola,et al.  Quantum Fidelity for Arbitrary Gaussian States. , 2015, Physical review letters.

[25]  M. Paris,et al.  Gaussian quantum discord. , 2010, Physical review letters.

[26]  Fabrizio Illuminati,et al.  Device-independent quantum reading and noise-assisted quantum transmitters , 2014 .

[27]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[28]  Quantum discord as a tool for comparing collapse models and decoherence , 2016, 1604.05834.

[29]  Seth Lloyd,et al.  Optimality of Gaussian discord. , 2013, Physical review letters.

[30]  Yu I Bogdanov,et al.  Statistical estimation of the efficiency of quantum state tomography protocols. , 2010, Physical review letters.

[31]  M. Paris,et al.  Quantum discord for Gaussian states with non-Gaussian measurements , 2012 .

[32]  Manik Banik,et al.  Classical communication and non-classical fidelity of quantum teleportation , 2012, Quantum Inf. Process..

[33]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.

[34]  H. Scutaru,et al.  Fidelity for displaced squeezed thermal states and the oscillator semigroup , 1997, quant-ph/9708013.

[35]  Xiaoguang Wang,et al.  An alternative quantum fidelity for mixed states of qudits , 2008, 0807.1781.

[36]  Sevag Gharibian Quantifying nonclassicality with local unitary operations , 2012 .

[37]  R. Werner,et al.  Evaluating capacities of bosonic Gaussian channels , 1999, quant-ph/9912067.

[38]  J. Hou,et al.  Fidelity and entanglement fidelity for infinite-dimensional quantum systems , 2014 .

[39]  Chuan Wang,et al.  Quantum correlations in Gaussian states via Gaussian channels: steering, entanglement, and discord , 2016, Quantum Inf. Process..

[40]  J. Cirac,et al.  Characterization of Gaussian operations and distillation of Gaussian states , 2002, quant-ph/0204085.

[41]  F. Illuminati,et al.  Entanglement in continuous-variable systems: recent advances and current perspectives , 2007, quant-ph/0701221.

[42]  H. Fan,et al.  General monogamy property of global quantum discord and the application , 2013, 1307.4848.

[43]  V. Giovannetti,et al.  Toward computability of trace distance discord , 2013, 1304.6879.

[44]  A. Serafini,et al.  Measuring Gaussian quantum information and correlations using the Rényi entropy of order 2. , 2012, Physical review letters.

[45]  Davide Girolami,et al.  Measurement-induced disturbances and nonclassical correlations of Gaussian states , 2010, 1012.4302.

[46]  Paulina Marian,et al.  Uhlmann fidelity between two-mode Gaussian states , 2011, 1111.7067.