The quadratic MITC plate and MITC shell elements in plate bending

The analysis of plates can be achieved using the quadratic MITC plate or MITC shell elements. The plate elements have a strong mathematical basis and have been shown to be optimal in their convergence behavior, theoretically and numerically. The shell elements have not (yet) been analyzed mathematically in depth for their rates of convergence, with the plate/shell thickness varying, but have been shown numerically to perform well. Since the shell elements are general and can be used for linear and nonlinear analyses of plates and shells, it is important to identify the differences in the performance of these elements when compared to the plate elements. We briefly review the quadratic quadrilateral and triangular MITC plate and shell elements and study their performances in linear plate analyses.

[1]  M. L. Bucalem,et al.  Finite element analysis of shell structures , 1997 .

[2]  Eduardo N. Dvorkin,et al.  A formulation of general shell elements—the use of mixed interpolation of tensorial components† , 1986 .

[3]  Ville Havu,et al.  Analysis of a bilinear finite element for shallow shells. II: Consistency error , 2003, Math. Comput..

[4]  Phill-Seung Lee,et al.  Insight into finite element shell discretizations by use of the basic shell mathematical model , 2005 .

[5]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[6]  Phill-Seung Lee,et al.  Towards improving the MITC9 shell element , 2003 .

[7]  Phill-Seung Lee,et al.  Insight into 3-node triangular shell finite elements: the effects of element isotropy and mesh patterns , 2007 .

[8]  K. Bathe Finite Element Procedures , 1995 .

[9]  K. Bathe,et al.  The MITC7 and MITC9 Plate bending elements , 1989 .

[10]  Alexander G Iosilevich,et al.  An inf-sup test for shell finite elements , 2000 .

[11]  Klaus-Jürgen Bathe,et al.  On evaluating the inf–sup condition for plate bending elements , 1997 .

[12]  J. C. Simo,et al.  A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .

[13]  Otso Ovaskainen,et al.  Shell deformation states and the finite element method : a benchmark study of cylindrical shells , 1995 .

[14]  K. Bathe,et al.  Development of MITC isotropic triangular shell finite elements , 2004 .

[15]  B. Häggblad,et al.  Specifications of boundary conditions for Reissner/Mindlin plate bending finite elements , 1990 .

[16]  Dominique Chapelle,et al.  The mathematical shell model underlying general shell elements , 2000 .

[17]  Rolf Stenberg,et al.  Superconvergence and postprocessing of MITC plate elements , 2007 .

[18]  K. Bathe,et al.  Fundamental considerations for the finite element analysis of shell structures , 1998 .

[19]  Klaus-Jürgen Bathe,et al.  A triangular six-node shell element , 2009 .

[20]  Rolf Stenberg,et al.  A Refined Error Analysis of MITC Plate Elements , 2006 .

[21]  M. L. Bucalém,et al.  Higher‐order MITC general shell elements , 1993 .

[22]  Anthony Ralston,et al.  Encyclopedia of computer science and engineering , 1983 .

[23]  D. Chapelle,et al.  The Finite Element Analysis of Shells - Fundamentals , 2003 .

[24]  K. Bathe,et al.  Mixed-interpolated elements for Reissner–Mindlin plates , 1989 .

[25]  K. Bathe,et al.  A Simplified Analysis of Two Plate Bending Elements — the MITC4 and MITC9 Elements , 1987 .

[26]  K. Bathe,et al.  Measuring convergence of mixed finite element discretizations: an application to shell structures , 2003 .

[27]  Klaus-Jürgen Bathe,et al.  Displacement and stress convergence of our MITC plate bending elements , 1990 .

[28]  Klaus-Jürgen Bathe,et al.  On the stability of mixed finite elements in large strain analysis of incompressible solids , 1997 .

[29]  Alexander G Iosilevich,et al.  An evaluation of the MITC shell elements , 2000 .