Application of Procrustes Distance to Shape Analysis of Delaunay Simplexes
暂无分享,去创建一个
[1] Tomaso Aste,et al. Volume fluctuations and geometrical constraints in granular packs. , 2006, Physical review letters.
[2] V. P. Voloshin,et al. Void space analysis of the structure of liquids , 2002 .
[3] Nikolai N. Medvedev,et al. Geometrical analysis of the structure of simple liquids : percolation approach , 1991 .
[4] David G. Kendall,et al. Shape & Shape Theory , 1999 .
[5] Nikolai N. Medvedev,et al. Can Various Classes of Atomic Configurations (Delaunay Simplices) be Distinguished in Random Dense Packings of Spherical Particles , 1989 .
[6] S. Umeyama,et al. Least-Squares Estimation of Transformation Parameters Between Two Point Patterns , 1991, IEEE Trans. Pattern Anal. Mach. Intell..
[7] François Guibault,et al. An analysis of simplex shape measures for anisotropic meshes , 2005 .
[8] Marina L. Gavrilova,et al. A Novel Delaunay Simplex Technique for Detection of Crystalline Nuclei in Dense Packings of Spheres , 2005, ICCSA.
[9] P. Debenedetti,et al. Computational investigation of order, structure, and dynamics in modified water models. , 2005, The journal of physical chemistry. B.
[10] N. N. Medvedev,et al. Shape of the Delaunay simplices in dense random packings of hard and soft spheres , 1987 .
[11] Iosif I. Vaisman,et al. Delaunay Tessellation of Proteins: Four Body Nearest-Neighbor Propensities of Amino Acid Residues , 1996, J. Comput. Biol..
[12] Robert B. Fisher,et al. Estimating 3-D rigid body transformations: a comparison of four major algorithms , 1997, Machine Vision and Applications.
[13] T. K. Carne,et al. Shape and Shape Theory , 1999 .
[14] Rikard Berthilsson,et al. A Statistical Theory of Shape , 1998, SSPR/SPR.
[15] H. Scott Fogler,et al. Modeling flow in disordered packed beds from pore‐scale fluid mechanics , 1997 .