Automata on Linear Orderings

We consider words indexed by linear orderings. These extend finite, (bi-)infinite words and words on ordinals. We introduce automata and rational expressions for words on linear orderings. We prove that for countable scattered linear orderings they are equivalent. This result extends Kleene's theorem. The proofs are effective.

[1]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[2]  J. Richard Büchi Transfinite Automata Recursions and Weak Second Order Theory of Ordinals , 1990 .

[3]  Stephan Heilbrunner An Algorithm for the Solution of Fixed-Point Equations for Infinite Words , 1980, RAIRO Theor. Informatics Appl..

[4]  Patricia Bouyer,et al.  A Kleene/Büchi-like Theorem for Clock Languages , 2001, J. Autom. Lang. Comb..

[5]  Eugene Asarin Equations on Timed Languages , 1998, HSCC.

[6]  Wolfgang Thomas,et al.  Ehrenfeucht Games, the Composition Method, and the Monadic Theory of Ordinal Words , 1997, Structures in Logic and Computer Science.

[7]  Michael R. Hansen,et al.  Finite Divergence , 1995, Theor. Comput. Sci..

[8]  Danièle Girault-Beauquier Bilimites de langages reconnaissables , 1984 .

[9]  Olivier Carton,et al.  An Eilenberg Theorem for Words on Countable Ordinals , 1998, LATIN.

[10]  Paul Caspi,et al.  A Kleene theorem for timed automata , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[11]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[12]  S. Shelah The monadic theory of order , 1975, 2305.00968.

[13]  Wolfgang Thomas On Frontiers of Regular Trees , 1986, RAIRO Theor. Informatics Appl..

[14]  Bruno Courcelle Frontiers of Infinite Trees , 1978, RAIRO Theor. Informatics Appl..

[15]  Maurice Nivat,et al.  Ensembles reconnaissables de mots biinfinis , 1982, STOC '82.

[16]  Dominique Perrin,et al.  Finite Automata , 1958, Philosophy.

[17]  S C Kleene,et al.  Representation of Events in Nerve Nets and Finite Automata , 1951 .

[18]  Claudine Picaronny,et al.  Accepting Zeno Words Without Making Time Stand Still , 1997, MFCS.

[19]  Yaacov Choueka Finite Automata, Definable Sets, and Regular Expressions over omega^n-Tapes , 1978, J. Comput. Syst. Sci..