Hamilton transversals in random Latin squares
暂无分享,去创建一个
[1] Noga Alon,et al. Random subgraphs of properly edge-coloured complete graphs and long rainbow cycles , 2016, Israel Journal of Mathematics.
[2] Joel H. Spencer,et al. Asymptotic behavior of the chromatic index for hypergraphs , 1989, J. Comb. Theory, Ser. A.
[3] Frank Mousset,et al. On Rainbow Cycles and Paths , 2012, ArXiv.
[4] Pooya Hatami,et al. A lower bound for the length of a partial transversal in a Latin square , 2008, J. Comb. Theory, Ser. A.
[5] Xueliang Li,et al. Long rainbow path in properly edge-colored complete graphs , 2015, 1503.04516.
[6] Henry Meyniel,et al. On a problem of G. Hahn about coloured hamiltonian paths in K2t , 1984, Discret. Math..
[7] Noga Alon,et al. On a Hypergraph Matching Problem , 2005, Graphs Comb..
[8] S. Stein. TRANSVERSALS OF LATIN SQUARES AND THEIR GENERALIZATIONS , 1975 .
[10] Lars Døvling Andersen. Hamilton circuits with many colours in properly edge-coloured complete graphs. , 1989 .
[11] Gábor N. Sárközy,et al. Rainbow matchings and cycle-free partial transversals of Latin squares , 2014, Discret. Math..
[12] Peter Keevash. Counting designs , 2015 .
[13] Peter Keevash,et al. The existence of designs II , 2018, 1802.05900.
[14] Richard H. Schelp,et al. Long rainbow cycles in proper edge-colorings of complete graphs , 2011, Australas. J Comb..
[15] Andries E. Brouwer,et al. A lower bound for the length of partial transversals in a latin square , 1978 .
[16] Theodore Molla,et al. Long rainbow cycles and Hamiltonian cycles using many colors in properly edge-colored complete graphs , 2017, Eur. J. Comb..
[17] Benny Sudakov,et al. Intercalates and discrepancy in random Latin squares , 2018, Random Struct. Algorithms.
[18] Richard Montgomery,et al. Spanning trees in random graphs , 2018, Advances in Mathematics.
[19] Benny Sudakov,et al. New bounds for Ryser’s conjecture and related problems , 2020, Transactions of the American Mathematical Society, Series B.
[20] Matthew Kwan. Almost all Steiner triple systems have perfect matchings , 2016, Proceedings of the London Mathematical Society.
[21] Benny Sudakov,et al. Long directed rainbow cycles and rainbow spanning trees , 2017, Eur. J. Comb..
[22] Brendan D. McKay,et al. Most Latin Squares Have Many Subsquares , 1999, J. Comb. Theory A.
[23] Mehdi Mhalla,et al. Rainbow and orthogonal paths in factorizations of Kn , 2010 .
[24] Ian M. Wanless. Cycle Switches in Latin Squares , 2004, Graphs Comb..
[25] Roman Glebov,et al. On the maximum number of Latin transversals , 2016, J. Comb. Theory, Ser. A.
[26] Anna A. Taranenko. Multidimensional Permanents and an Upper Bound on the Number of Transversals in Latin Squares , 2015 .
[27] Leslie Hogben,et al. Combinatorial Matrix Theory , 2013 .
[28] Ian M. Wanless,et al. The cycle structure of two rows in a random Latin square , 2008, Random Struct. Algorithms.