Hamilton transversals in random Latin squares

Gyárfás and Sárközy conjectured that every n × n Latin square has a ‘cycle-free’ partial transversal of size n−2. We confirm this conjecture in a strong sense for almost all Latin squares, by showing that as n → ∞, all but a vanishing proportion of n×n Latin squares have a Hamilton transversal, i.e. a full transversal for which any proper subset is cycle-free. In fact, we prove a counting result that in almost all Latin squares, the number of Hamilton transversals is essentially that of Taranenko’s upper bound on the number of full transversals. This result strengthens a result of Kwan (which in turn implies that almost all Latin squares also satisfy the famous Ryser-Brualdi-Stein conjecture). As part of the proof, we also prove that almost all n × n Latin squares have no symbol appearing more than ω(logn/ log log n) times on the

[1]  Noga Alon,et al.  Random subgraphs of properly edge-coloured complete graphs and long rainbow cycles , 2016, Israel Journal of Mathematics.

[2]  Joel H. Spencer,et al.  Asymptotic behavior of the chromatic index for hypergraphs , 1989, J. Comb. Theory, Ser. A.

[3]  Frank Mousset,et al.  On Rainbow Cycles and Paths , 2012, ArXiv.

[4]  Pooya Hatami,et al.  A lower bound for the length of a partial transversal in a Latin square , 2008, J. Comb. Theory, Ser. A.

[5]  Xueliang Li,et al.  Long rainbow path in properly edge-colored complete graphs , 2015, 1503.04516.

[6]  Henry Meyniel,et al.  On a problem of G. Hahn about coloured hamiltonian paths in K2t , 1984, Discret. Math..

[7]  Noga Alon,et al.  On a Hypergraph Matching Problem , 2005, Graphs Comb..

[8]  S. Stein TRANSVERSALS OF LATIN SQUARES AND THEIR GENERALIZATIONS , 1975 .

[10]  Lars Døvling Andersen Hamilton circuits with many colours in properly edge-coloured complete graphs. , 1989 .

[11]  Gábor N. Sárközy,et al.  Rainbow matchings and cycle-free partial transversals of Latin squares , 2014, Discret. Math..

[12]  Peter Keevash Counting designs , 2015 .

[13]  Peter Keevash,et al.  The existence of designs II , 2018, 1802.05900.

[14]  Richard H. Schelp,et al.  Long rainbow cycles in proper edge-colorings of complete graphs , 2011, Australas. J Comb..

[15]  Andries E. Brouwer,et al.  A lower bound for the length of partial transversals in a latin square , 1978 .

[16]  Theodore Molla,et al.  Long rainbow cycles and Hamiltonian cycles using many colors in properly edge-colored complete graphs , 2017, Eur. J. Comb..

[17]  Benny Sudakov,et al.  Intercalates and discrepancy in random Latin squares , 2018, Random Struct. Algorithms.

[18]  Richard Montgomery,et al.  Spanning trees in random graphs , 2018, Advances in Mathematics.

[19]  Benny Sudakov,et al.  New bounds for Ryser’s conjecture and related problems , 2020, Transactions of the American Mathematical Society, Series B.

[20]  Matthew Kwan Almost all Steiner triple systems have perfect matchings , 2016, Proceedings of the London Mathematical Society.

[21]  Benny Sudakov,et al.  Long directed rainbow cycles and rainbow spanning trees , 2017, Eur. J. Comb..

[22]  Brendan D. McKay,et al.  Most Latin Squares Have Many Subsquares , 1999, J. Comb. Theory A.

[23]  Mehdi Mhalla,et al.  Rainbow and orthogonal paths in factorizations of Kn , 2010 .

[24]  Ian M. Wanless Cycle Switches in Latin Squares , 2004, Graphs Comb..

[25]  Roman Glebov,et al.  On the maximum number of Latin transversals , 2016, J. Comb. Theory, Ser. A.

[26]  Anna A. Taranenko Multidimensional Permanents and an Upper Bound on the Number of Transversals in Latin Squares , 2015 .

[27]  Leslie Hogben,et al.  Combinatorial Matrix Theory , 2013 .

[28]  Ian M. Wanless,et al.  The cycle structure of two rows in a random Latin square , 2008, Random Struct. Algorithms.