Approximate Counting of Minimal Unsatisfiable Subsets

Given an unsatisfiable formula F in CNF, i.e. a set of clauses, the problem of Minimal Unsatisfiable Subset (MUS) seeks to identify a minimal subset of clauses \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \subseteq F$$\end{document} such that N is unsatisfiable. The emerging viewpoint of MUSes as the root causes of unsatisfiability has led MUSes to find applications in a wide variety of diagnostic approaches. Recent advances in identification and enumeration of MUSes have motivated researchers to discover applications that can benefit from rich information about the set of MUSes. One such extension is that of counting the number of MUSes. The current best approach for MUS counting is to employ a MUS enumeration algorithm, which often does not scale for the cases with a reasonably large number of MUSes. Motivated by the success of hashing-based techniques in the context of model counting, we design the first approximate MUS counting procedure with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\varepsilon ,\delta )$$\end{document} guarantees, called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {AMUSIC}$$\end{document}. Our approach avoids exhaustive MUS enumeration by combining the classical technique of universal hashing with advances in QBF solvers along with a novel usage of union and intersection of MUSes to achieve runtime efficiency. Our prototype implementation of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {AMUSIC}$$\end{document} is shown to scale to instances that were clearly beyond the realm of enumeration-based approaches.

[1]  Jesús Giráldez-Cru,et al.  Seeking Practical CDCL Insights from Theoretical SAT Benchmarks , 2018, IJCAI.

[2]  Meir Kalech,et al.  Exploring the Duality in Conflict-Directed Model-Based Diagnosis , 2012, AAAI.

[3]  Lubos Brim,et al.  Analysing sanity of requirements for avionics systems , 2015, Formal Aspects of Computing.

[4]  Joao Marques-Silva,et al.  PySAT: A Python Toolkit for Prototyping with SAT Oracles , 2018, SAT.

[5]  Mats Per Erik Heimdahl,et al.  Proof-based coverage metrics for formal verification , 2017, 2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE).

[6]  Rafael Peñaloza,et al.  BEACON: An Efficient SAT-Based Tool for Debugging EL^+ Ontologies , 2016, SAT.

[7]  Nikola Benes,et al.  Recursive Online Enumeration of All Minimal Unsatisfiable Subsets , 2017, ATVA.

[8]  Ofer Strichman,et al.  Minimal unsatisfiable core extraction for SMT , 2016, 2016 Formal Methods in Computer-Aided Design (FMCAD).

[9]  Markus N. Rabe,et al.  CAQE: A Certifying QBF Solver , 2015, 2015 Formal Methods in Computer-Aided Design (FMCAD).

[10]  Sanjit A. Seshia,et al.  Understanding and Extending Incremental Determinization for 2QBF , 2018, CAV.

[11]  Joao Marques-Silva,et al.  Fast, flexible MUS enumeration , 2015, Constraints.

[12]  Ivana Cerná,et al.  Tunable Online MUS/MSS Enumeration , 2016, FSTTCS.

[13]  Raymond Reiter,et al.  A Theory of Diagnosis from First Principles , 1986, Artif. Intell..

[14]  Karem A. Sakallah,et al.  Algorithms for Computing Minimal Unsatisfiable Subsets of Constraints , 2007, Journal of Automated Reasoning.

[15]  Kedian Mu,et al.  Formulas Free From Inconsistency: An Atom-Centric Characterization in Priest's Minimally Inconsistent LP , 2019, J. Artif. Intell. Res..

[16]  Supratik Chakraborty,et al.  A Scalable Approximate Model Counter , 2013, CP.

[17]  Supratik Chakraborty,et al.  Balancing scalability and uniformity in SAT witness generator , 2014, 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC).

[18]  Oliver Kullmann,et al.  Investigations on autark assignments , 2000, Discret. Appl. Math..

[19]  Brian C. Williams,et al.  Diagnosing Multiple Faults , 1987, Artif. Intell..

[20]  Zhi-Zhong Chen,et al.  The complexity of selecting maximal solutions , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[21]  Sharad Malik,et al.  On computing minimal independent support and its applications to sampling and counting , 2015, Constraints.

[22]  Inês Lynce,et al.  On Improving MUS Extraction Algorithms , 2011, SAT.

[23]  Anthony Hunter,et al.  Measuring Inconsistency through Minimal Inconsistent Sets , 2008, KR.

[24]  E. Sperner Ein Satz über Untermengen einer endlichen Menge , 1928 .

[25]  Bart Selman,et al.  Near-Uniform Sampling of Combinatorial Spaces Using XOR Constraints , 2006, NIPS.

[26]  Matthias Thimm,et al.  On the Evaluation of Inconsistency Measures , 2017 .

[27]  Mikolás Janota,et al.  On Deciding MUS Membership with QBF , 2011, CP.

[28]  Jaroslav Bendík Consistency checking in requirements analysis , 2017, ISSTA.

[29]  Alexander Nadel,et al.  Designers Work Less with Quality Formal Equivalence Checking , 2010 .

[30]  Ivana Cerná,et al.  Online Enumeration of All Minimal Inductive Validity Cores , 2018, SEFM.

[31]  Ivana Cerná,et al.  MUST: Minimal Unsatisfiable Subsets Enumeration Tool , 2020, TACAS.

[32]  Claude Castelluccia,et al.  Extending SAT Solvers to Cryptographic Problems , 2009, SAT.

[33]  Vasco M. Manquinho,et al.  Efficient Autarkies , 2014, ECAI.

[34]  Sanjit A. Seshia,et al.  On Parallel Scalable Uniform SAT Witness Generation , 2015, TACAS.

[35]  Florian Lonsing,et al.  QRATPre+: Effective QBF Preprocessing via Strong Redundancy Properties , 2019, SAT.

[36]  Albert R. Meyer,et al.  The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.

[37]  Dietmar Jannach,et al.  Model-based diagnosis of spreadsheet programs: a constraint-based debugging approach , 2016, Automated Software Engineering.

[38]  Joao Marques-Silva,et al.  On Computing the Union of MUSes , 2019, SAT.

[39]  Supratik Chakraborty,et al.  Algorithmic Improvements in Approximate Counting for Probabilistic Inference: From Linear to Logarithmic SAT Calls , 2016, IJCAI.

[40]  Ewald Speckenmeyer,et al.  Solving satisfiability in less than 2n steps , 1985, Discret. Appl. Math..

[41]  Ofer Strichman,et al.  Accelerated Deletion-based Extraction of Minimal Unsatisfiable Cores , 2014, J. Satisf. Boolean Model. Comput..

[42]  Ivana Cerná,et al.  Evaluation of Domain Agnostic Approaches for Enumeration of Minimal Unsatisfiable Subsets , 2018, LPAR.

[43]  Joao Marques-Silva,et al.  Accelerating MUS extraction with recursive model rotation , 2011, 2011 Formal Methods in Computer-Aided Design (FMCAD).

[44]  Hans Kleine Büning,et al.  Minimal Unsatisfiability and Autarkies , 2009, Handbook of Satisfiability.

[45]  Mikolás Janota,et al.  On the Query Complexity of Selecting Few Minimal Sets , 2014, Electron. Colloquium Comput. Complex..

[46]  Mark H. Liffiton,et al.  Enumerating Infeasibility: Finding Multiple MUSes Quickly , 2013, CPAIOR.

[47]  H LiffitonMark,et al.  Algorithms for Computing Minimal Unsatisfiable Subsets of Constraints , 2008 .

[48]  Fahiem Bacchus,et al.  Finding a Collection of MUSes Incrementally , 2016, CPAIOR.

[49]  Joao Marques-Silva,et al.  MUS Extraction Using Clausal Proofs , 2014, SAT.

[50]  Joao Marques-Silva,et al.  Computing Maximal Autarkies with Few and Simple Oracle Queries , 2015, SAT.

[51]  Fahiem Bacchus,et al.  Using Minimal Correction Sets to More Efficiently Compute Minimal Unsatisfiable Sets , 2015, CAV.

[52]  Joao Marques-Silva,et al.  MUSer2: An Efficient MUS Extractor , 2012, J. Satisf. Boolean Model. Comput..

[53]  Nikolaj Bjørner,et al.  Core-Guided Minimal Correction Set and Core Enumeration , 2018, IJCAI.

[54]  Moshe Y. Vardi,et al.  Not all FPRASs are equal: demystifying FPRASs for DNF-counting , 2018, Constraints.

[55]  Mate Soos,et al.  BIRD: Engineering an Efficient CNF-XOR SAT Solver and Its Applications to Approximate Model Counting , 2019, AAAI.