Applications of the Wigner Distribution Function in Signal Processing

We present a review of the applications of the Wigner distribution function in various areas of signal processing: amplitude and phase retrieval, signal recognition, characterization of arbitrary signals, optical systems and devices, and coupling coefficient estimation in phase space. Although reference is made to specific signals and systems, the mathematical formulation is general and can be applied to either spatial, temporal, or spatio-temporal phase spaces, to coherent, partially coherent, or discrete signals. The universal and intuitive character of the Wigner distribution approach to signal characterization and processing and its simplicity in solving many issues are evidenced throughout the paper.

[1]  Daniela Dragoman,et al.  Recovery of longitudinally variant refractive index profile from the measurement of the Wigner transform , 1998 .

[2]  M G Raymer,et al.  Chronocyclic tomography for measuring the amplitude and phase structure of optical pulses. , 1993, Optics letters.

[3]  Thomas W. Parks,et al.  Time-varying filtering and signal estimation using Wigner distribution synthesis techniques , 1986, IEEE Trans. Acoust. Speech Signal Process..

[4]  E. Keren,et al.  Generalized beam parameters and transformation laws for partially coherent light. , 1988, Applied optics.

[5]  R. Martínez-Herrero,et al.  Third- and fourth-order parametric characterization of partially coherent beams propagating throughABCD optical systems , 1992 .

[6]  Gemma María Piquero Sanz,et al.  On the propagation of the kurtosis parameter of general beams , 1995 .

[7]  C. Hirlimann,et al.  Wavelet analysis of short light pulses. , 1992, Applied optics.

[8]  A. Walther Radiometry and coherence , 1968 .

[9]  Ana Leonor Rivera,et al.  Holographic information in the Wigner function , 1997 .

[10]  Kurt Bernardo Wolf,et al.  Wigner distribution function for paraxial polychromatic optics , 1996 .

[11]  R. Martínez-Herrero,et al.  Spatial characterization of general partially polarized beams. , 1997, Optics letters.

[12]  D. Dragoman,et al.  Wigner-distribution-function representation of the coupling coefficient. , 1995, Applied optics.

[13]  D. Dragoman,et al.  Can the Wigner transform of a two-dimensional rotationally symmetric beam be fully recovered from the Wigner transform of its one-dimensional approximation? , 2000, Optics letters.

[14]  R. Martínez-Herrero,et al.  Beam quality in monomode diode lasers , 1992 .

[15]  Michael Conner,et al.  Optical Wigner distribution and ambiguity function for complex signals and images , 1988 .

[16]  Daniela Dragoman The Wigner distribution function of self-Fourier functions , 1996 .

[17]  Boualem Boashash,et al.  Time-Frequency Signal Analysis and Processing , 2002 .

[18]  R. Bamler,et al.  The Wigner Distribution Function of Two-dimensional Signals Coherent-optical Generation and Display , 1983 .

[19]  Mircea Dragoman,et al.  Quantum coherent versus classical coherent light , 2001 .

[20]  M. Dragoman,et al.  Recovery of the refractive-index profile from the wigner distribution of an optical waveguide. , 1998, Applied optics.

[21]  Ehud Heyman,et al.  Wigner–Ville distribution for pulse propagation in random media: pulsed plane wave , 1998 .

[22]  D Dragoman,et al.  Beam-propagation method based on the Wigner transform: a new formulation. , 1997, Optics letters.

[23]  D. Dragoman,et al.  Wigner distribution function for Gaussian-Schell beams in complex matrix optical systems. , 1995, Applied optics.

[24]  Peter S. Lomdahl,et al.  The Wigner Transform of Soliton Solutions for the Nonlinear Schrödinger Equation , 1994 .

[25]  A W Lohmann,et al.  Wigner formulation of optical processing with light of arbitrary coherence. , 2001, Applied optics.

[26]  T. Iwai,et al.  Simultaneous optical production of the sectional wigner distribution function for a two-dimensional object , 1986 .

[27]  D. Dragoman,et al.  Phase-space interferences as the source of negative values of the Wigner distribution function. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  Mj Martin Bastiaans Transport Equations for the Wigner Distribution Function in an Inhomogeneous and Dispersive Medium , 1979 .

[29]  M A Muriel,et al.  Fiber grating synthesis by use of time-frequency representations. , 1998, Optics letters.

[30]  M A Muriel,et al.  Reconstruction of fiber grating period profiles by use of Wigner-Ville distributions and spectrograms. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[31]  A. G. Kostenbauder,et al.  Ray-pulse matrices: a rational treatment for dispersive optical systems , 1990 .

[32]  James B. Murphy Phase space conservation and selection rules for astigmatic mode converters , 1999 .

[33]  M. Teague Image analysis via the general theory of moments , 1980 .

[34]  Gregory William Forbes,et al.  Wigner functions for Helmholtz wave fields , 1999 .

[35]  Mietek Lisak,et al.  Propagation of partially incoherent light in nonlinear media via the Wigner transform method , 2002 .

[36]  Horst Weber,et al.  Determination of the ten second order intensity moments , 1998 .

[37]  Román Castañeda,et al.  On the relationship between the cross-spectral density and the Wigner distribution function , 1998 .

[38]  Mj Martin Bastiaans The Wigner distribution function and Hamilton's characteristics of a geometric-optical system , 1979 .

[39]  Françoise Peyrin,et al.  A unified definition for the discrete-time, discrete-frequency, and discrete-time/Frequency Wigner distributions , 1986, IEEE Trans. Acoust. Speech Signal Process..

[40]  Boualem Boashash,et al.  An efficient real-time implementation of the Wigner-Ville distribution , 1987, IEEE Trans. Acoust. Speech Signal Process..

[41]  F. Hlawatsch,et al.  Linear and quadratic time-frequency signal representations , 1992, IEEE Signal Processing Magazine.

[42]  Daniela Dragoman Higher-order moments of the Wigner distribution function in first-order optical systems , 1994 .

[43]  Gemma María Piquero Sanz,et al.  Sharpness changes of gaussian beams induced by spherically aberrated lenses , 1994 .

[44]  Dianyuan Fan,et al.  Intensity-moments characterization of general pulsed paraxial beams with the Wigner distribution function , 1999 .

[45]  H. Bremmer,et al.  The Wigner distribution matrix for the electric field in a stochastic dielectric with computer simulation , 1983 .

[46]  Daniela Dragoman,et al.  The Wigner distribution function and the energy conservation of a light beam , 1996 .

[47]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[48]  Rolf Gase,et al.  The Multimode Laser Radiation as a Gaussian Schell Model Beam , 1991 .

[49]  Rosario Martínez-Herrero,et al.  Parametric characterization of light pulses propagating through single-mode fibres , 1996 .

[50]  Mj Martin Bastiaans Transport equations for the Wigner distribution function , 1979 .

[51]  E Tajahuerce,et al.  White-light implementation of the Wigner-distribution function with an achromatic processor. , 1995, Applied optics.

[52]  T Alieva,et al.  Wigner distribution and fractional Fourier transform for two-dimensional symmetric optical beams. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[53]  Mj Martin Bastiaans Application of the Wigner distribution function to partially coherent light , 1986 .

[54]  Mircea Dragoman,et al.  Phase space characterization of solitons with the Wigner transform , 1997 .

[55]  David M. Bloom,et al.  Picosecond time-lenses , 1994 .

[56]  Karl-Heinz Brenner,et al.  Amplitude and phase recovery of rotationally symmetric beams. , 2002, Applied optics.

[57]  D. Onciul,et al.  Efficiency of light launching into waveguides: a phase space approach , 1994 .

[58]  D. Mendlovic,et al.  Definition, properties and applications of the generalized temporal-spatial Wigner distribution function , 1997 .

[59]  Levent Onural,et al.  Extraction of three-dimensional object-location information directly from in-line holograms using Wigner analysis , 1992 .

[60]  A. Pons,et al.  Achromatic White-light Self-imaging Phenomenon: An Approach Using the Wigner Distribution Function , 1995 .

[61]  F. Reil,et al.  Heterodyne measurement of Wigner distributions for classical optical fields. , 1999, Optics letters.

[62]  A. Lohmann,et al.  Wigner distribution function display of complex 1D signals , 1982 .

[63]  A Wax,et al.  Optical phase-space distributions for low-coherence light. , 1999, Optics letters.

[64]  R A Athale,et al.  Acousto-optic processors for real-time generation of time-frequency representations. , 1983, Optics letters.

[65]  T. Claasen,et al.  THE WIGNER DISTRIBUTION - A TOOL FOR TIME-FREQUENCY SIGNAL ANALYSIS , 1980 .

[66]  R. Martínez-Herrero,et al.  Second-order spatial characterization of hard-edge diffracted beams. , 1993, Optics letters.

[67]  Javier Alda,et al.  Complex beam parameter and ABCD law for non-Gaussian and nonspherical light beams. , 1992, Applied optics.

[68]  Rosario Martínez-Herrero,et al.  On the propagation of the kurtosis parameter of general beams , 1995 .

[69]  M J Bastiaans Wigner distribution function applied to twisted Gaussian light propagating in first-order optical systems. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[70]  Anthony E. Siegman,et al.  Measurement of all ten second-order moments of an astigmatic beam by the use of rotating simple astigmatic (anamorphic) optics , 1994 .

[71]  R. Martínez-Herrero,et al.  Beam quality changes of Gaussian Schell-model fields propagating through Gaussian apertures. , 1992, Applied optics.

[72]  Wojciech Nasalski Scale formulation of first-order nonlinear optics , 1997 .

[73]  Genaro Saavedra,et al.  Analysis of the irradiance along different paths in the image space using the Wigner distribution function , 1997 .

[74]  Horst Weber,et al.  Determination of laser beam parameters with the phase space beam analyser , 1992 .

[75]  Daniela Dragoman,et al.  Wigner-transform approach to paraxial light propagation in stratified media , 1997 .

[76]  Daniela Dragoman,et al.  I: The Wigner Distribution Function in Optics and Optoelectronics , 1997 .

[77]  Leon P. J. Kamp Local frequency spectra for nonlinear wave equations , 1987 .

[78]  Naoki Kawamura,et al.  Real-time profiling of a pure phase object using an auto-Wigner distribution function , 1993 .

[79]  P. A. BMlanger Beam propagation and the ABCD ray matrices , 2002 .

[80]  J. Galán,et al.  Parametric characterization of general partially coherent beams propagating through ABCD optical-systems , 1991 .

[81]  D Mendlovic,et al.  Proposal for optical implementation of the wigner distribution function. , 1998, Applied optics.

[82]  B. Saleh,et al.  Moment invariants in the space and frequency domains. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[83]  Gerald Matz,et al.  Wigner distributions (nearly) everywhere: time-frequency analysis of signals, systems, random processes, signal spaces, and frames , 2003, Signal Process..

[84]  Tom Hall,et al.  Chronocyclic description of laser pulse compression , 1996 .

[85]  M. Teague Optical calculation of irradiance moments. , 1980, Applied optics.

[86]  B. Kolner Space-time duality and the theory of temporal imaging , 1994 .

[87]  R. K. Luneburg,et al.  Mathematical Theory of Optics , 1966 .

[88]  Arnold Migus,et al.  Space–time Wigner functions and their application to the analysis of a pulse shaper , 1995 .

[89]  Daniela Dragoman Wigner distribution function for a complex matrix optical system , 1995 .

[90]  Leon Cohen,et al.  The Wigner distribution for classical systems , 2002 .

[91]  R. Martínez-Herrero,et al.  Beam quality changes produced by quartic phase transmittances , 1995 .

[92]  D. F. McAlister,et al.  Optical phase retrieval by phase-space tomography and fractional-order Fourier transforms. , 1995, Optics letters.

[93]  M Gray,et al.  Optical homodyne tomography of information carrying laser beams. , 1998, Optics express.

[94]  Reinhard März,et al.  Integrated Optics: Design and Modeling , 1995 .

[95]  D. Onciul Characterization of the propagation of light beams through misaligned linear optical systems , 1993 .

[96]  Gabor T. Herman,et al.  Image reconstruction from projections : the fundamentals of computerized tomography , 1980 .

[97]  Mircea Dragoman,et al.  Time-frequency characterization of magnetostatic envelope soliton waves , 1997 .

[98]  D. Dragoman,et al.  Wigner distribution function applied to third-order aberrations. , 1996, Applied optics.

[99]  Mj Martin Bastiaans The Wigner distribution function applied to optical signals and systems , 1978 .

[100]  Beck,et al.  Complex wave-field reconstruction using phase-space tomography. , 1994, Physical review letters.

[101]  M. Alonso,et al.  Uncertainty products for nonparaxial wave fields. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[102]  J. Paye,et al.  The chronocyclic representation of ultrashort light pulses , 1992 .

[103]  Genaro Saavedra,et al.  Synthesis of filters for specified axial irradiance by use of phase-space tomography , 2001 .

[104]  Rosario Martínez-Herrero,et al.  Beam characterization through active media , 1991 .

[105]  Gemma María Piquero Sanz,et al.  Propagation of laser beam parameters through pure phase transmittances , 1996 .

[106]  R. Martínez-Herrero,et al.  Rotation of partially coherent beams propagating through free space , 1992 .

[107]  Tatiana Alieva,et al.  Wigner distribution moments measured as fractional Fourier transform intensity moments , 2003, International Commission for Optics.

[108]  R. Martínez-Herrero,et al.  Parametric characterization of Gaussian beams propagating through active media , 1996 .

[109]  D. Dragoman,et al.  Wigner distribution function in nonlinear optics. , 1996, Applied optics.

[110]  Anthony E. Siegman,et al.  Defining the effective radius of curvature for a nonideal optical beam , 1991 .

[111]  A. Belouchrani,et al.  Time-Frequency Signal Analysis and Processing , 2003 .

[112]  M Testorf Analysis of the moiré effect by use of the Wigner distribution function. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[113]  Mircea Dragoman,et al.  Integrated optic-devices characterization with the Wigner transform , 1996 .

[114]  J. Mayer,et al.  On the Quantum Correction for Thermodynamic Equilibrium , 1947 .

[115]  Mendonca,et al.  Analog of the wigner-moyal equation for the electromagnetic field , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[116]  C. Paré,et al.  Beam propagation in a linear or nonlinear lens-like medium usingABCD ray matrices: the method of moments , 1992 .

[117]  Mj Martin Bastiaans Wigner distribution function and its application to first-order optics , 1979 .

[118]  L. Cohen,et al.  Time-frequency distributions-a review , 1989, Proc. IEEE.

[119]  Z. Zalevsky,et al.  Generalized Wigner function for the analysis of superresolution systems. , 1998, Applied optics.

[120]  M. Conner,et al.  Optical generation of the Wigner distribution of 2-D real signals. , 1985, Applied optics.