Analysis of nonblocking ATM switches with multiple input queues

An analytical model for the performance analysis of a multiple input queued asynchronous transfer mode (ATM) switch is presented. The interconnection network of the ATM switch is internally nonblocking and each input port maintains a separate queue of cells for each output port. The switch uses parallel iterative matching (PIM) to find the maximal matching between the input and output ports of the switch. A closed-form solution for the maximum throughput of the switch under saturated conditions is derived. It is found that the maximum throughput of the switch exceeds 99% with just four iterations of the PIM algorithm. Using the tagged input queue approach, an analytical model for evaluating the switch performance under an independent identically distributed Bernoulli traffic with the cell destinations uniformly distributed over all output ports is developed. The switch throughput, mean cell delay, and cell loss probability are computed from the analytical model. The accuracy of the analytical model is verified using simulation.

[1]  Chong Kwan Un,et al.  Performance Analysis of Packet Switches with Input and Output Buffers , 1994, Comput. Networks ISDN Syst..

[2]  Thomas E. Anderson,et al.  High-speed switch scheduling for local-area networks , 1993, TOCS.

[3]  Nick McKeown,et al.  The Tiny Tera: A Packet Switch Core , 1998, IEEE Micro.

[4]  Marcel F. Neuts,et al.  Matrix-Geometric Solutions in Stochastic Models , 1981 .

[5]  Samuel P. Morgan,et al.  Input Versus Output Queueing on a Space-Division Packet Switch , 1987, IEEE Trans. Commun..

[6]  Anurag Kumar,et al.  Saturation throughput analysis of an input queueing ATM switch with multiclass bursty traffic , 1995, IEEE Trans. Commun..

[7]  Romano Fantacci,et al.  Performance evaluation of input and output queueing techniques in ATM switching systems , 1993, IEEE Trans. Commun..

[8]  Nick McKeown,et al.  Scheduling algorithms for input-queued cell switches , 1996 .

[9]  Achille Pattavina,et al.  Analysis of input and output queueing for nonblocking ATM switches , 1993, TNET.

[10]  Myung J. Lee,et al.  Cell loss analysis and design trade-offs of nonblocking ATM switches with nonuniform traffic , 1995, TNET.

[11]  H. T. Mouftah,et al.  Survey of ATM Switch Architectures , 1995, Comput. Networks ISDN Syst..

[12]  Nick McKeown,et al.  Multicast Scheduling for Input-Queued Switches , 1997, IEEE J. Sel. Areas Commun..

[13]  Donald F. Towsley,et al.  A performance model for ATM switches with general packet length distributions , 1995, TNET.

[14]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[15]  Pravin Varaiya,et al.  Scheduling cells in an input-queued switch , 1993 .

[16]  Reza Rooholamini,et al.  Finding the right ATM switch for the market , 1994, Computer.

[17]  C. K. Un,et al.  Analysis of backpressure-type packet switches with input and output buffering , 1993 .

[18]  Jean C. Walrand,et al.  Achieving 100% throughput in an input-queued switch , 1996, Proceedings of IEEE INFOCOM '96. Conference on Computer Communications.

[19]  Mounir Hamdi,et al.  Cell loss analysis of nonblocking ATM switches using importance sampling , 1996 .

[20]  H. T. Nguyen,et al.  The performance analysis and implementation of an input access scheme in a high-speed packet switch , 1994, IEEE Trans. Commun..

[21]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[22]  Jogesh K. Muppala,et al.  Performance evaluation of ATM switches under various traffic and buffering schemes , 1995, Proceedings of GLOBECOM '95.

[23]  Jogesh K. Muppala,et al.  PERFORMANCE EVALUATION OF NON‐BLOCKING ATM SWITCHES UNDER VARIOUS TRAFFIC AND BUFFERING SCHEMES , 1996 .

[24]  J. Mehdi Stochastic Models in Queueing Theory , 1991 .

[25]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[26]  Dimitrios N. Serpanos,et al.  Two-dimensional round-robin schedulers for packet switches with multiple input queues , 1994, TNET.