Comparative Morphology of the Euglenid Pellicle. II. Diversity of Strip Substructure

ABSTRACT. The morphological diversity associated with the strip substructure of the euglenid pellicle was examined, and after identifying characters and states, we outlined hypotheses about their evolution. We have attempted to standardize terms necessary for analytical comparisons of strips by providing a glossary and comparing published synonyms. Most of the substructural diversity found in euglenids is demonstrated with 13 representative taxa. Strips are generally composed of two subcomponents: frames and projections. Frames support the basic shape of strips and many can be described as either S‐shaped, plateau‐shaped, M‐shaped, or A‐shaped. Projections branch laterally from the frames, are usually periodic, and can be described as thread‐like structures, an indented plate, tooth‐like structures, and plate‐like structures. The ancestral state included strips that were few in number, flat, and fused. The strips became S‐shaped and disjoined in the lineage leading to most euglenid taxa. These strips became secondarily flattened and fused in one lineage. In some lineages of phototrophs, the strips became increasingly robust. Two strips of different morphology formed the repeating pellicular unit or doublet in four taxa. These doublets evolved convergently at least three times and may provide insights into developmental patterns of the cytoskeleton.

[1]  T L JAHN,et al.  The Euglenoid Flagellates , 1946, The Quarterly Review of Biology.

[2]  V. Groupé Surface Striations of Euglena gracilis Revealed by Electron Microscopy , 1947, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[3]  Adolf Remane,et al.  Die Grundlagen des natürlichen Systems, der vergleichenden Anatomie und der Phylogenetik : theoretische Morphologie und Systematik I , 1952 .

[4]  A. G. Lowndes,et al.  The genus Euglena , 1954 .

[5]  C. Greenblatt,et al.  A Pheophytin-like Pigment in Dark-Adapted Euglena gracilis , 1959 .

[6]  J. Kirk,et al.  THE FINE STRUCTURE OF THE PELLICLE OF EUGLENA GRACILIS , 1964 .

[7]  Gordon F. Leedale,et al.  Pellicle structure in Euglena , 1964 .

[8]  J. Sommer THE ULTRASTRUCTURE OF THE PELLICLE COMPLEX OF EUGLENA GRACILIS , 1965, The Journal of cell biology.

[9]  J. Blum,et al.  Cell division in Astasia longa. , 1965, Experimental cell research.

[10]  P. Walne,et al.  Observations on the Fine Structure ot the Pellicle Pores of Euglena granulata , 1967 .

[11]  A. Remane Remane, Principles of the Natural System@@@Die Grundlagen des naturlichen Systems, der Vergleichenden Anatomie und der Phylogenetik , 1972 .

[12]  A. R. Loeblich PROTISTAN PHYLOGENY AS INDICATED BY THE FOSSIL RECORD , 1974 .

[13]  G. B. Bouck,et al.  Immunological and structural evidence for patterned intussusceptive surface growth in a unicellular organism. A postulated role for submembranous proteins and microtubules , 1976, The Journal of cell biology.

[14]  W. Foissner Comparative light and electron microscopical studies on the argyrophilic structures of Euglena viridis. , 1977, Acta biologica Academiae Scientiarum Hungaricae.

[15]  J. Rosowski,et al.  CRYPTOGLENA PIGRA: A EUGLENOID WITH ONE CHLOROPLAST1 2 , 1978 .

[16]  M. Bré,et al.  Euglena plasma membrane during normal and vitamin B12 starvation growth. , 1980, Journal of cell science.

[17]  F. M. Gerola,et al.  Pellicle Ultrastructure of Some Euglena Species , 1981 .

[18]  J. Murray Control of cell shape by calcium in the euglenophyceae. , 1981, Journal of cell science.

[19]  D. DeRosier,et al.  The Cytoskeleton , 1984, Springer US.

[20]  R. Dubreuil,et al.  The membrane skeleton of a unicellular organism consists of bridged, articulating strips , 1985, The Journal of cell biology.

[21]  T. Suzaki,et al.  Ultrastructure and Sliding of Pellicular Structures During Euglenoid Movement in Astasia longa Pringsheim (Sarcomastigophora, Euglenida) , 1986 .

[22]  G. Brugerolle,et al.  The membrane cytoskeleton complex of Euglenids. I: Biochemical and immunological characterization of the epiplasmic proteins of Euglena acus , 1986 .

[23]  T. Suzaki,et al.  Pellicular ultrastructure and euglenoid movement in Euglena ehrenbergii KLEBS and Euglena oxyuris SCHMARDA , 1986 .

[24]  J. Cann Ultrastructural Observations of Taxonomic Importance on the Euglenoid Genera GyropaigneSkuja, ParmidiumChristen, and RhabdospiraPringsheim (Euglenida: Rhabdomonadina) , 1986 .

[25]  K. J. Owens,et al.  THE FLAGELLAR APPARATUS AND RESERVOIR/CANAL CYTOSKELETON OF CRYPTOGLENA PIGRA (EUGLENOPHYCEAE) 1 , 1988 .

[26]  D. Patterson,et al.  Phagotrophy and the origins of the euglenoid flagellates , 1988 .

[27]  R. Triemer,et al.  A redescription of the genus Ploeotia Duj. (Euglenophyceae) , 1988 .

[28]  J. Gray,et al.  Is Moyeria a euglenoid , 1989 .

[29]  G. Tell,et al.  Ultrastructure of the pellicle and the envelope of some euglenoid flagellates from Argentina by means of S.E.M. , 1989 .

[30]  P. Walne,et al.  Structural characterization of Eutreptia pertyi (Euglenophyta). I : General description , 1991 .

[31]  D. Patterson,et al.  The Biology of free-living heterotrophic flagellates , 1992 .

[32]  J. Marrs,et al.  The two major membrane skeletal proteins (articulins) of Euglena gracilis define a novel class of cytoskeletal proteins , 1992, The Journal of cell biology.

[33]  M. A. Farmer,et al.  An Ultrastructural Study of Lentomonas applanatum (Preisig) N. G. (Euglenida) , 1994 .

[34]  L. Fritz,et al.  TETREUTREPTIA POMQUETENSIS GEN. ET SP. NOV. (EUGLENOPHYCEAE): A QUADRIFLAGELLATE, PHOTOTROPHIC MARINE EUGLENOID 1 , 1994 .

[35]  G. B. Bouck,et al.  Cortical structure and function in euglenoids with reference to trypanosomes, ciliates, and dinoflagellates. , 1996, International review of cytology.

[36]  N. Dragoș,et al.  Comparative fine structure of pellicular cytoskeleton in EuglenaEhrenberg , 1997 .

[37]  R. Triemer,et al.  PHYLOGENETIC RELATIONSHIPS OF SELECTED EUGLENOID GENERA BASED ON MORPHOLOGICAL AND MOLECULAR DATA 1 , 1997 .

[38]  R. Triemer,et al.  A Molecular Study of Euglenoid Phylogeny using Small Subunit rDNA , 1999, The Journal of eukaryotic microbiology.

[39]  M. Schagerl,et al.  Comparative ultrastructure of the cytoskeleton and nucleus of Distigma (euglenozoa) , 1999 .

[40]  I. Busse,et al.  Phylogenetic analyses of various euglenoid taxa (euglenozoa) based on 18s rdna sequence data , 2000 .

[41]  D. Angeler A light microscopical and ultrastructural investigation and validation of Khawkinea pertyi comb, nova (Euglenophyta) , 2000 .

[42]  R. Triemer,et al.  A MOLECULAR ANALYSIS OF THE EUGLENOPHYTES USING SSU RDNA , 2000, Journal of phycology.

[43]  B. Leander,et al.  Comparative Morphology of the Euglenid Pellicle. I. Patterns of Strips and Pores , 2000, The Journal of eukaryotic microbiology.

[44]  B. Leander,et al.  EVOLUTION OF PHACUS (EUGLENOPHYCEAE) AS INFERRED FROM PELLICLE MORPHOLOGY AND SSU rDNA , 2001 .