Oxidation of ZrB2-SiC Ultrahigh-Temperature Ceramic Composites in Dissociated Air

The oxidation behavior and surface properties of hot-pressed ZrB 2 -SiC ultrahigh-temperature ceramic composites are investigated under aerothermal heating conditions in the high-temperature, low-pressure partially dissociated airstream of the 1.2 MW Plasmatron facility at the von Karman Institute for Fluid Dynamics. Samples are oxidized at different flow enthalpies for exposure times of up to 20 min at surface temperatures ranging from 1250 to 1575°C. The microstructure and composition of the resulting oxide layers are characterized using electron and optical microscopies, x-ray diffraction, and energy-dispersive x-ray analysis. Comparisons are made with samples oxidized under similar temperature and pressure conditions in a furnace test environment in which atomic oxygen concentrations are negligible. Changes in surface optical properties are documented using spectral reflectance measurements, and effective catalytic efficiencies are estimated using computational fluid dynamics calculations together with measured surface temperatures and heat fluxes.

[1]  O. S. Heavens,et al.  Optical Properties of Thin Solid Films , 2011 .

[2]  D. Fletcher,et al.  Optical Emission Spectroscopy During Plasmatron Testing of ZrB2-SiC Ultrahigh-Temperature Ceramic Composites , 2009 .

[3]  Jean-Louis Sans,et al.  Effect of the Machining Method on the Catalycity and Emissivity of ZrB2 and ZrB2–HfB2‐Based Ceramics , 2008 .

[4]  J. Fuller,et al.  Topical Issue on Ultra‐High‐Temperature Ceramics , 2008 .

[5]  William G. Fahrenholtz,et al.  Refractory Diborides of Zirconium and Hafnium , 2007 .

[6]  William G. Fahrenholtz,et al.  Oxidation of Zirconium Diboride–Silicon Carbide at 1500°C at a Low Partial Pressure of Oxygen , 2006 .

[7]  V. Barone,et al.  N atoms recombination on a silica surface: A global theoretical approach , 2006 .

[8]  Raffaele Borrelli,et al.  Catalytic and Radiative Behaviors of ZrB2-SiC Ultrahigh Temperature Ceramic Composites , 2006 .

[9]  Alenka Vesel,et al.  Neutral oxygen atom density in the MESOX air plasma solar furnace facility , 2006 .

[10]  L. Bedra,et al.  Atomic oxygen recombination on quartz at high temperature: experiments and molecular dynamics simulation. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[11]  Olivier Chazot,et al.  Flight Extrapolation of Plasma Wind Tunnel Stagnation Region Flowfield , 2006 .

[12]  Olivier Chazot,et al.  Sensitivity Analysis of the Local Heat Transfer Simulation for the Application to Thermal Protection Systems , 2006 .

[13]  Richard A. Copeland,et al.  Surface Catalysis Experiments on Metal Surfaces in Oxygen and Carbon Monoxide Mixtures , 2006 .

[14]  D. Sciti,et al.  Long-term oxidation behavior and mechanical strength degradation of a pressurelessly sintered ZrB2–MoSi2 ceramic , 2005 .

[15]  Martin Lerch,et al.  Nitridation of zirconia , 2005 .

[16]  L. Bedra,et al.  Comparative modeling study and experimental results of atomic oxygen recombination on silica-based surfaces at high temperature , 2005 .

[17]  D. Sciti,et al.  Oxidation behavior of a pressureless sintered ZrB_2–MoSi_2 ceramic composite , 2005 .

[18]  M. Sacks,et al.  Guest Editorial: Ultra-high temperature ceramics , 2004 .

[19]  E. Opila,et al.  Oxidation of ZrB2- and HfB2-based ultra-high temperature ceramics: Effect of Ta additions , 2004 .

[20]  Bridget R. Rogers,et al.  Catalytic Atom Recombination on ZrB2/SiC and HfB2/SiC Ultrahigh-Temperature Ceramic Composites , 2004 .

[21]  Donald T. Ellerby,et al.  High‐Strength Zirconium Diboride‐Based Ceramics , 2004 .

[22]  Thomas E. Tiwald,et al.  Optical properties of bulk c-ZrO2, c-MgO and a-As2S3 determined by variable angle spectroscopic ellipsometry , 2004 .

[23]  Alida Bellosi,et al.  Oxidation of ZrB2-Based Ceramics in Dry Air , 2003 .

[24]  R. Berjoan,et al.  Recombination coefficient of atomic oxygen on ceramic materials under earth re-entry conditions by optical emission spectroscopy , 2003 .

[25]  Gérard Degrez,et al.  Computation of nonequilibrium high-temperature axisymmetric boundary-layer flows , 2002 .

[26]  Alida Bellosi,et al.  Processing and properties of zirconium diboride-based composites , 2002 .

[27]  G. Degrez,et al.  Numerical model of high-pressure air inductive plasmas under thermal and chemical non-equilibrium , 2000 .

[28]  Gérard Degrez,et al.  An implicit multiblock solver for inductive plasma flows , 2000 .

[29]  Mark M. Opeka,et al.  Mechanical, Thermal, and Oxidation Properties of Refractory Hafnium and zirconium Compounds , 1999 .

[30]  Mario Carbonaro,et al.  Thermodynamic and Transport Properties for Inductive Plasma Modeling , 1999 .

[31]  Richard A. Copeland,et al.  Experimental investigation of surface reactions in carbon monoxide and oxygen mixtures , 1999 .

[32]  Mario Carbonaro,et al.  Experimental and computational determination of the VKI Plasmatron operating envelope , 1999 .

[33]  M. Balat,et al.  Ceramics Catalysis Evaluation at High Temperature Using Thermal and Chemical Approaches , 1999 .

[34]  M. Czerniak,et al.  Thermal and chemical approaches for oxygen catalytic recombination evaluation on ceramic materials at high temperature , 1997 .

[35]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[36]  J. Marschall Experimental determination of oxygen and nitrogen recombination coefficients at elevated temperatures using laser-induced fluorescence , 1997 .

[37]  Gérard Degrez,et al.  Aerothermodynamic design of an inductively coupled plasma wind tunnel , 1997 .

[38]  R. Copeland,et al.  Measurement of catalytic recombination coefficients on quartz using laser-induced fluorescence , 1996 .

[39]  Sheikh A. Akbar,et al.  Electrical Resistivity of Titanium Diboride and Zirconium Diboride , 1995 .

[40]  G. Flamant,et al.  Active to passive transition in the oxidation of silicon carbide at high temperature and low pressure in molecular and atomic oxygen , 1992 .

[41]  J. Margrave,et al.  The Oxidation Kinetics of Zirconium Diboride and Zirconium Carbide at High Temperatures , 1964 .

[42]  C. Wagner,et al.  Passivity during the Oxidation of Silicon at Elevated Temperatures , 1958 .

[43]  G. Hilmas,et al.  Evolution of structure during the oxidation of zirconium diboride–silicon carbide in air up to 1500 °C , 2007 .

[44]  R. Savino,et al.  Stability of ultra-high-temperature ZrB2–SiC ceramics under simulated atmospheric re-entry conditions , 2007 .

[45]  William G. Fahrenholtz,et al.  Thermodynamic Analysis of ZrB2–SiC Oxidation: Formation of a SiC‐Depleted Region , 2007 .

[46]  M. Balat-Pichelin OXIDATION AND CATALYCITY OF THERMAL PROTECTION MATERIALS AT HIGH TEMPERATURE , 2004 .

[47]  Jonathan A. Salem,et al.  Evaluation of ultra-high temperature ceramics foraeropropulsion use , 2002 .

[48]  Marianne J.H. Balat,et al.  Determination of the active-to-passive transition in the oxidation of silicon carbide in standard and microwave-excited air , 1996 .