Optimum Design of a Planar Micromanipulator Using Displacement Amplifier

Sufficient workspace and high natural frequency of a micromanipulator are the fundamental requirements in its design. In this study, a previous design was analyzed from the viewpoint of the axiomatic design. Then, a new design parameter as displacement amplifier which transforms a coupled design into a decoupled design, was suggested. And a design procedure based on axiomatic design was developed. A planar 3-DOF parallel-type micromanipulator was chosen as an exemplary device. According to the suggested design procedure, the micromanipulator having the required natural frequency was designed in the first step, and then the displacement amplifier satisfying the required work space was designed sequentially. To check the effectiveness of the manipulator and displacement amplifier, simulations and experiments were performed. Those are verified that the displacement amplifiers implemened work very well for satisfying the required task workspace.