Particle back-transport and permeate flux behavior in crossflow membrane filters

Particle residence time distributions in a membrane channel are interpreted to elucidate mechanisms of particle transport and colloidal fouling in membrane filtration. A comparison of particle size distributions in the membrane feed suspensions and deposited cakes provides evidence for selective particle transport and accumulation on membranes. These data support a previously hypothesized minimum in particle back-transport from the membrane as a function of particle size. The back-transport of smaller particles is apparently due to Brownian diffusion, while larger macrocolloids are controlled by an orthokinetic mechanism such as shear-induced diffusion. In all cases, cake specific resistances measured in the dead-end mode were higher than those of the corresponding feed suspensions. Also, cake specific resistances measured under a crossflow were higher than those in the dead-end mode. Further, the specific resistance of particle deposits on membranes increased with shear rate and decreased as the initial ...