Block Decoupling of Boolean Control Networks

In this paper, the block decoupling of Boolean control networks is investigated via solving logical matrix equations. First, the definition of block decoupling of Boolean control networks is proposed. Second, the block decoupling problem is equivalently converted into the solvability of a set of logical matrix equations. Subsequently, the approaches to solve these equations are designed, based on which the suitable coordinate transformations and open-loop controllers can be determined. Finally, an illustrative example is given to show the effectiveness of the main results.

[1]  Tamer Basar,et al.  Stability structures of conjunctive Boolean networks , 2016, Autom..

[2]  Jiandong Zhu,et al.  Graph theory methods for decomposition w.r.t. outputs of Boolean control networks , 2017, J. Syst. Sci. Complex..

[3]  Daizhan Cheng,et al.  Analysis and Control of Boolean Networks , 2011 .

[4]  Jinde Cao,et al.  On Controllability of Delayed Boolean Control Networks , 2016, SIAM J. Control. Optim..

[5]  Michael Margaliot,et al.  Observability of Boolean networks: A graph-theoretic approach , 2013, Autom..

[6]  H. D. Jong,et al.  Qualitative simulation of genetic regulatory networks using piecewise-linear models , 2004, Bulletin of mathematical biology.

[7]  Michael Margaliot,et al.  A Polynomial-Time Algorithm for Solving the Minimal Observability Problem in Conjunctive Boolean Networks , 2017, IEEE Transactions on Automatic Control.

[8]  M. Ng,et al.  Control of Boolean networks: hardness results and algorithms for tree structured networks. , 2007, Journal of theoretical biology.

[9]  Tianguang Chu,et al.  Complete Synchronization of Boolean Networks , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[10]  Jr. B. Morgan The synthesis of linear multivariable systems by state-variable feedback , 1964 .

[11]  Yang Liu,et al.  The equivalence issue of two kinds of controllers in Boolean control networks , 2018, Appl. Math. Comput..

[12]  Yang Liu,et al.  Static output feedback set stabilization for context-sensitive probabilistic Boolean control networks , 2018, Appl. Math. Comput..

[13]  M. Margaliot Controllability and observability of Boolean control networks , 2012 .

[14]  Michael Margaliot,et al.  Minimal Controllability of Conjunctive Boolean Networks is NP-Complete , 2017, Autom..

[15]  Pan Wang,et al.  Set stability and set stabilization of Boolean control networks based on invariant subsets , 2015, Autom..

[16]  Daizhan Cheng,et al.  Morgan’s problem of Boolean control networks , 2017 .

[17]  Lijun Zhang,et al.  Observability of Boolean Control Networks: A Unified Approach Based on Finite Automata , 2014, IEEE Transactions on Automatic Control.

[18]  E. Kreund,et al.  The structure of decoupled non-linear systems , 1975 .

[19]  Ettore Fornasini,et al.  Optimal Control of Boolean Control Networks , 2014, IEEE Transactions on Automatic Control.

[20]  A. Hoffmann,et al.  The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. , 2002, Science.

[21]  Michael Margaliot,et al.  Minimum-Time Control of Boolean Networks , 2013, SIAM J. Control. Optim..

[22]  Jiandong Zhu,et al.  System decomposition with respect to inputs for Boolean control networks , 2014, Autom..

[23]  Tianguang Chu,et al.  State Feedback Stabilization for Boolean Control Networks , 2013, IEEE Transactions on Automatic Control.

[24]  Daizhan Cheng,et al.  Modeling, Analysis and Control of Networked Evolutionary Games , 2015, IEEE Transactions on Automatic Control.

[25]  Daizhan Cheng,et al.  A Linear Representation of Dynamics of Boolean Networks , 2010, IEEE Transactions on Automatic Control.

[26]  Daizhan Cheng,et al.  A note on observability of Boolean control networks , 2015, ASCC.

[27]  H. D. Jong,et al.  Piecewise-linear Models of Genetic Regulatory Networks: Equilibria and their Stability , 2006, Journal of mathematical biology.

[28]  Michael Margaliot,et al.  Controllability of Boolean control networks via the Perron-Frobenius theory , 2012, Autom..

[29]  S. Kauffman Metabolic stability and epigenesis in randomly constructed genetic nets. , 1969, Journal of theoretical biology.

[30]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .

[31]  Denis Thieffry,et al.  Logical modelling of cell cycle control in eukaryotes: a comparative study. , 2009, Molecular bioSystems.

[32]  Yang Liu,et al.  Nonsingularity of Grain-like cascade FSRs via semi-tensor product , 2017, Science China Information Sciences.

[33]  Yang Liu,et al.  Strategy optimization for static games based on STP method , 2018, Appl. Math. Comput..

[34]  Ettore Fornasini,et al.  Output feedback stabilization of Boolean control networks , 2015, Autom..

[35]  P. Falb,et al.  Decoupling in the design and synthesis of multivariable control systems , 1967, IEEE Transactions on Automatic Control.

[36]  R. Thomas,et al.  Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of regulatory networks in terms of feedback circuits. , 2001, Chaos.

[37]  Juan Yao,et al.  Input‐Output Decoupling of Boolean Control Networks , 2018 .

[38]  J. Lafay,et al.  New results about Morgan's problem , 1993, IEEE Trans. Autom. Control..

[39]  Jinde Cao,et al.  Pinning Control for the Disturbance Decoupling Problem of Boolean Networks , 2017, IEEE Transactions on Automatic Control.

[40]  Tianguang Chu,et al.  Synchronization of Boolean networks with time delays , 2012, Appl. Math. Comput..

[41]  R. Thomas,et al.  Multistationarity, the basis of cell differentiation and memory. I. Structural conditions of multistationarity and other nontrivial behavior. , 2001, Chaos.

[42]  Tamer Başar,et al.  Controllability of Conjunctive Boolean Networks With Application to Gene Regulation , 2017, IEEE Transactions on Control of Network Systems.

[43]  A. Morse,et al.  Decoupling and Pole Assignment in Linear Multivariable Systems: A Geometric Approach , 1970 .

[44]  A. Hoffmann,et al.  The I (cid:1) B –NF-(cid:1) B Signaling Module: Temporal Control and Selective Gene Activation , 2022 .

[45]  Jinde Cao,et al.  Function perturbations on singular Boolean networks , 2017, Autom..

[46]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[47]  M. Heymann,et al.  Linear feedback decoupling--Transfer function analysis , 1983 .