New Ramsey Classes from Old

Let $\mathcal{C}_1$ and $\mathcal{C}_2$ be strong amalgamation classes of finite structures, with disjoint finite signatures $\sigma$ and $\tau$. Then $\mathcal{C}_1 \wedge \mathcal{C}_2$ denotes the class of all finite ($\sigma\cup\tau$)-structures whose $\sigma$-reduct is from $\mathcal{C}_1$ and whose $\tau$-reduct is from $\mathcal{C}_2$. We prove that when $\mathcal{C}_1$ and $\mathcal{C}_2$ are Ramsey, then $\mathcal{C}_1 \wedge \mathcal{C}_2$ is also Ramsey. We also discuss variations of this statement, and give several examples of new Ramsey classes derived from those general results.

[1]  Manuel Bodirsky Cores of Countably Categorical Structures , 2007, Log. Methods Comput. Sci..

[2]  Julia Böttcher,et al.  Ramsey Properties of Permutations , 2013, Electron. J. Comb..

[3]  Vojtech Rödl,et al.  The partite construction and ramsey set systems , 1989, Discret. Math..

[4]  Michael Pinsker,et al.  Reducts of Ramsey structures , 2011, AMS-ASL Joint Special Session.

[5]  V. Pestov,et al.  Fraïssé Limits, Ramsey Theory, and topological dynamics of automorphism groups , 2003 .

[6]  P. Cameron,et al.  Oligomorphic permutation groups , 1990 .

[7]  Barnaby Martin,et al.  On the Scope of the Universal-Algebraic Approach to Constraint Satisfaction , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[8]  G. Cherlin,et al.  The Classification of Countable Homogeneous Directed Graphs and Countable Homogeneous N-Tournaments , 1998 .

[9]  M. Sokic,et al.  Ramsey property, ultrametric spaces, finite posets, and universal minimal flows , 2013 .

[10]  Wilfrid Hodges,et al.  A Shorter Model Theory , 1997 .

[11]  Manuel Bodirsky,et al.  Complexity Classification in Infinite-Domain Constraint Satisfaction , 2012, ArXiv.

[12]  Diana Piguet,et al.  Finite trees are Ramsey under topological embeddings , 2010, 1002.1557.

[13]  Jaroslav Nesetril,et al.  Ramsey Classes and Homogeneous Structures , 2005, Combinatorics, Probability and Computing.

[14]  Keith R. Milliken,et al.  A Ramsey Theorem for Trees , 1979, J. Comb. Theory, Ser. A.

[15]  Miodrag Sokic Ramsey Property of Posets and Related Structures , 2011 .