Mastering hysteresis in magnetocaloric materials

Hysteresis is more than just an interesting oddity that occurs in materials with a first-order transition. It is a real obstacle on the path from existing laboratory-scale prototypes of magnetic refrigerators towards commercialization of this potentially disruptive cooling technology. Indeed, the reversibility of the magnetocaloric effect, being essential for magnetic heat pumps, strongly depends on the width of the thermal hysteresis and, therefore, it is necessary to understand the mechanisms causing hysteresis and to find solutions to minimize losses associated with thermal hysteresis in order to maximize the efficiency of magnetic cooling devices. In this work, we discuss the fundamental aspects that can contribute to thermal hysteresis and the strategies that we are developing to at least partially overcome the hysteresis problem in some selected classes of magnetocaloric materials with large application potential. In doing so, we refer to the most relevant classes of magnetic refrigerants La–Fe–Si-, Heusler- and Fe2P-type compounds. This article is part of the themed issue ‘Taking the temperature of phase transitions in cool materials’.

[1]  Evaluating the effect of magnetocaloric properties on magnetic refrigeration performance , 2010 .

[2]  M. Katter,et al.  Magnetocaloric Properties of ${\hbox{La}}({\hbox{Fe}},{\hbox{Co}},{\hbox{Si}})_{13}$ Bulk Material Prepared by Powder Metallurgy , 2008, IEEE Transactions on Magnetics.

[3]  K. Gschneidner,et al.  Giant Magnetocaloric Effect in Gd{sub 5}(Si{sub 2}Ge{sub 2}) , 1997 .

[4]  A. Saito,et al.  Magnetocaloric effect of new spherical magnetic refrigerant particles of La(Fe1−x−yCoxSiy)13 compounds , 2007 .

[5]  Lei Zhang,et al.  Magnetocaloric effect, cyclability and coefficient of refrigerant performance in the MnFe(P, Si, B) system , 2014 .

[6]  Konstantin P. Skokov,et al.  Contradictory role of the magnetic contribution in inverse magnetocaloric Heusler materials , 2016 .

[7]  O. Gutfleisch,et al.  Large reversible magnetocaloric effect in Ni-Mn-In-Co , 2015 .

[8]  O. Gutfleisch,et al.  On the S(T) diagram of magnetocaloric materials with first-order transition: Kinetic and cyclic effects of Heusler alloys , 2016 .

[9]  L. Schultz,et al.  Multiple metamagnetic transitions in the magnetic refrigerant La(Fe,Si)13Hx. , 2008, Physical review letters.

[10]  K. Gschneidner,et al.  The giant magnetocaloric effect of optimally prepared Gd5Si2Ge2 , 2003 .

[11]  J. Eckert,et al.  A new type of La(Fe,Si)13-based magnetocaloric composite with amorphous metallic matrix , 2015 .

[12]  Nini Pryds,et al.  An Experimental Study of Passive Regenerator Geometries , 2011 .

[13]  H. Sepehri-Amin,et al.  The effect of the thermal decomposition reaction on the mechanical and magnetocaloric properties of La(Fe,Si,Co)13 , 2012 .

[14]  V. Khovaylo,et al.  Magnetocaloric and magnetic properties of Ni2Mn1−xCuxGa Heusler alloys: An insight from the direct measurements and ab initio and Monte Carlo calculations , 2013 .

[15]  A. Berenov,et al.  Influence of thermal conductivity on the dynamic response of magnetocaloric materials , 2015 .

[16]  L. Schultz,et al.  Magnetic entropy change in melt-spun MnFePGe (invited) , 2006 .

[17]  A. Tishin,et al.  The Magnetocaloric Effect and its Applications , 2003 .

[18]  V. Franco,et al.  A universal curve for the magnetocaloric effect: an analysis based on scaling relations , 2008 .

[19]  Xavier Moya,et al.  Too cool to work , 2015, Nature Physics.

[20]  Konstantin P. Skokov,et al.  Selective laser melting of La(Fe,Co,Si) 13 geometries for magnetic refrigeration , 2013 .

[21]  Konstantin P. Skokov,et al.  The maximal cooling power of magnetic and thermoelectric refrigerators with La(FeCoSi) 13 alloys , 2013 .

[22]  F. Hu,et al.  Particle size dependent hysteresis loss in La0.7Ce0.3Fe11.6Si1.4C0.2 first‐order systems , 2012 .

[23]  G. D. de Wijs,et al.  Mixed Magnetism for Refrigeration and Energy Conversion , 2011, 1203.0556.

[24]  S. A. Nikitin,et al.  Anomalously high entropy change in FeRh alloy , 1996 .

[25]  Björn Palm,et al.  Magnetic vs. vapor-compression household refrigerators: A preliminary comparative life cycle assessment , 2014 .

[26]  Stefan Müller,et al.  Energy barriers and hysteresis in martensitic phase transformations , 2009 .

[27]  Oliver Gutfleisch,et al.  Giant magnetocaloric effect driven by structural transitions. , 2012, Nature materials.

[28]  T. G. Woodcock,et al.  Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions , 2016 .

[29]  J. Eckert,et al.  Asymmetric first‐order transition and interlocked particle state in magnetocaloric La(Fe,Si)13 , 2015 .

[30]  Andrew Rowe,et al.  Design improvements of a permanent magnet active magnetic refrigerator , 2014 .

[31]  J. Kynický,et al.  Diversity of Rare Earth Deposits: The Key Example of China , 2012 .

[32]  L. Cohen,et al.  Capturing first- and second-order behavior in magnetocaloric CoMnSi0.92Ge0.08 , 2009 .

[33]  Vitalij K. Pecharsky,et al.  Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from ∼20 to ∼290 K , 1997 .

[34]  L. Mañosa,et al.  Large reversible entropy change at the inverse magnetocaloric effect in Ni-Co-Mn-Ga-In magnetic shape memory alloys , 2013 .

[35]  K. Ishida,et al.  Magnetic and martensitic transformations of NiMnX(X=In,Sn,Sb) ferromagnetic shape memory alloys , 2004 .

[36]  S. Linderoth,et al.  Direct and indirect measurement of the magnetocaloric effect in La0.67Ca0.33−xSrxMnO3 ± δ () , 2005 .

[37]  M. Kuz’min Factors limiting the operation frequency of magnetic refrigerators , 2007 .

[38]  B. Shen,et al.  Magnetocaloric properties of the LaFe11.7Si1.3 and LaFe11.2Co0.7Si1.1 systems , 2005 .

[39]  Modeling the fractional magnetic states of magnetostructural transformations , 2014 .

[40]  P. Nordblad,et al.  Specific Heat of the Ferromagnet Fe2P , 1982 .

[41]  L. Cohen,et al.  Study of the first paramagnetic to ferromagnetic transition in as prepared samples of Mn–Fe–P–Si magnetocaloric compounds prepared by different synthesis routes , 2016 .

[42]  L. Cohen,et al.  Reducing extrinsic hysteresis in first-order la (Fe,Co,Si)13 magnetocaloric systems , 2009 .

[43]  R. Burriel,et al.  A comprehensive study of a versatile magnetic refrigeration demonstrator , 2016 .

[44]  K. G. Sandeman Magnetocaloric materials: The search for new systems , 2012, 1201.3113.

[45]  J. Coey,et al.  Magnetism and Magnetic Materials , 2001 .

[46]  Fujii Hironobu,et al.  Magnetic Properties of Fe2P Single Crystal , 1977 .

[47]  J. Wosnitza,et al.  Dynamical Effects of the Martensitic Transition in Magnetocaloric Heusler Alloys from DirectΔTadMeasurements under Different Magnetic-Field-Sweep Rates , 2016 .

[48]  K. Gschneidner,et al.  MAGNETIC PHASE TRANSITIONS AND THE MAGNETOTHERMAL PROPERTIES OF GADOLINIUM , 1998 .

[49]  M. Avdeev,et al.  Neutron diffraction study on the magnetic structure of Fe2P-based Mn0.66Fe1.29P1−xSix melt-spun ribbons , 2013 .

[50]  N. van Dijk,et al.  Direct measurement of the magnetocaloric effect in MnFe(P,X)(X = As, Ge, Si) materials , 2014 .

[51]  A. Tishin,et al.  The magnetocaloric effect in Fe49Rh51 compound , 1990 .

[52]  L. Schultz,et al.  Reversible solid-state hydrogen-pump driven by magnetostructural transformation in the prototype system La(Fe,Si)13Hy , 2012 .

[53]  O. Gutfleisch,et al.  The Resource Basis of Magnetic Refrigeration , 2017 .

[54]  T. Lograsso,et al.  Hydrostatic pressure control of the magnetostructural phase transition in Gd5Si2Ge2 single crystals , 2005 .

[55]  Andrej Kitanovski,et al.  Magnetocaloric Energy Conversion: From Theory to Applications , 2015 .

[56]  E. Brück,et al.  Magnetocaloric effects in MnFeP1−xAsx-based compounds , 2005 .

[57]  Andrej Kitanovski,et al.  A new magnetocaloric refrigeration principle with solid-state thermoelectric thermal diodes , 2013 .

[58]  Vitalij K. Pecharsky,et al.  GIANT MAGNETOCALORIC EFFECT IN GD5(SI2GE2) , 1997 .

[59]  Haluk E. Karaca,et al.  Magnetic Field‐Induced Phase Transformation in NiMnCoIn Magnetic Shape‐Memory Alloys—A New Actuation Mechanism with Large Work Output , 2009 .

[60]  O. Gutfleisch,et al.  Influence of thermal hysteresis and field cycling on the magnetocaloric effect in LaFe11.6Si1.4 , 2013 .

[61]  V. Khovaylo,et al.  Magnetocaloric materials with first-order phase transition: thermal and magnetic hysteresis in LaFe11.8Si1.2 and Ni2.21Mn0.77Ga1.02 (invited) , 2012 .

[62]  M. Ibarra,et al.  Pressure enhancement of the giant magnetocaloric effect in Tb5Si2Ge2. , 2004, Physical review letters.

[63]  V. Khovaylo Inconvenient magnetocaloric effect in ferromagnetic shape memory alloys , 2013 .

[64]  N. Alford,et al.  Microstructural control and tuning of thermal conductivity in La0.67Ca0.33MnO3±δ , 2012, 1210.0410.

[65]  Xiangzhao Meng,et al.  Review on research of room temperature magnetic refrigeration , 2003 .

[66]  N. van Dijk,et al.  Taming the First‐Order Transition in Giant Magnetocaloric Materials , 2014, Advanced materials.

[67]  L. Cohen,et al.  Evaluation of the reliability of the measurement of key magnetocaloric properties: A round robin study of La(Fe,Si,Mn)Hδ conducted by the SSEEC consortium of European laboratories , 2012 .

[68]  Konstantin P. Skokov,et al.  Systematic investigation of Mn substituted La(Fe,Si)13 alloys and their hydrides for room-temperature magnetocaloric application , 2014 .

[69]  S. Russek,et al.  The performance of a large-scale rotary magnetic refrigerator , 2014 .

[70]  S. Fujieda,et al.  Itinerant-electron Metamagnetic Transition and Large Magnetocaloric Effects in La(FexSi1-x)13 Compounds and Their Hydrides , 2003 .

[71]  Vitalij K. Pecharsky,et al.  Consequences of the magnetocaloric effect on magnetometry measurements , 2010 .

[72]  R. Bjork,et al.  Comparison of adjustable permanent magnetic field sources , 2010 .

[73]  M. Kuz’min Landau-type parametrization of the equation of state of a ferromagnet , 2008 .

[74]  A. Grunebohm,et al.  First-principles calculation of the instability leading to giant inverse magnetocaloric effects , 2014, 1401.8148.

[75]  João P. Araújo,et al.  Optimization of the physical properties of magnetocaloric materials for solid state magnetic refrigeration , 2016 .

[76]  S. Fujieda,et al.  Thermal transport properties of magnetic refrigerants La(FexSi1−x)13 and their hydrides, and Gd5Si2Ge2 and MnAs , 2004 .

[77]  G. V. Brown Magnetic heat pumping near room temperature , 1976 .

[78]  N. Oliveira Entropy change upon magnetic field and pressure variations , 2007 .

[79]  J. Lyubina,et al.  Dynamics of the First‐Order Metamagnetic Transition in Magnetocaloric La(Fe,Si)13: Reducing Hysteresis , 2015 .

[80]  P. Fajfar,et al.  Epoxy-bonded La–Fe–Co–Si magnetocaloric plates , 2015 .

[81]  P. Egolf,et al.  Innovative ideas for future research on magnetocaloric technologies , 2010 .

[82]  V. Franco,et al.  Scaling laws for the magnetocaloric effect in second order phase transitions: From physics to applications for the characterization of materials , 2010 .

[83]  U. Hannemann,et al.  Novel La(Fe,Si)13/Cu Composites for Magnetic Cooling , 2012 .

[84]  O. Gutfleisch,et al.  Exploring La(Fe,Si)13-based magnetic refrigerants towards application , 2012 .

[85]  K. Gschneidner,et al.  Description and Performance of a Near-Room Temperature Magnetic Refrigerator , 1998 .

[86]  B. Shen,et al.  Reduction of hysteresis loss and large magnetocaloric effect in the C- and H-doped La(Fe, Si)13 compounds around room temperature , 2012 .

[87]  J. Wosnitza,et al.  Dependence of the inverse magnetocaloric effect on the field-change rate in Mn3GaC and its relationship to the kinetics of the phase transition , 2015 .

[88]  V. Khovaylo,et al.  Reversibility and irreversibility of magnetocaloric effect in a metamagnetic shape memory alloy under cyclic action of a magnetic field , 2010 .

[89]  E. Brück,et al.  Structural and magnetocaloric properties of (Mn,Fe)2(P,Si) materials with added nitrogen , 2016 .

[90]  Christian R.H. Bahl,et al.  Properties of magnetocaloric La(Fe,Co,Si)13 produced by powder metallurgy , 2010 .

[91]  O. Gutfleisch,et al.  On the preparation of La(Fe,Mn,Si)13Hx polymer-composites with optimized magnetocaloric properties , 2015 .

[92]  Christina H. Chen,et al.  Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient , 2011, Advanced materials.

[93]  B. Kaeswurm,et al.  Assessment of the magnetocaloric effect in La,Pr(Fe,Si) under cycling , 2016 .

[94]  M. Avdeev,et al.  High/low-moment phase transition in hexagonal Mn-Fe-P-Si compounds , 2012 .

[95]  E. Brück,et al.  About the mechanical stability of MnFe(P,Si,B) giant-magnetocaloric materials , 2014 .

[96]  V. Pecharsky,et al.  Thirty years of near room temperature magnetic cooling: Where we are today and future prospects , 2008 .

[97]  Mehmet Acet,et al.  Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. , 2010, Nature materials.

[98]  M. Kuz’min,et al.  Giant induced anisotropy ruins the magnetocaloric effect in gadolinium , 2013 .

[99]  M. Kuz’min,et al.  Heat exchangers made of polymer-bonded La(Fe,Si)13 , 2014 .