B-spline neural network design using improved differential evolution for identification of an experimental nonlinear process

B-Spline Neural Network (BSNN), a type of basis function neural network, is trained by gradient-based methods which may fall into local minima during the learning procedure. To overcome the limitations encountered by gradient-based optimization methods, we propose differential evolution (DE) - an evolutionary computation methodology - which can provide a stochastic search to adjust the control points of a BSNN. In this paper, we propose six DE approaches using chaotic sequences based on logistic mapping to train a BSNN. Chaos describes the complex behavior of a nonlinear deterministic system. The application of chaotic sequences instead of random sequences in DE is a powerful strategy to diversify the DE population and improve the DE's performance in preventing premature convergence to local minima. The numerical results presented here indicate that chaotic DE was effective for building a good BSNN model for the nonlinear identification of an experimental nonlinear yo-yo motion control system.

[1]  Qinghua Zhang,et al.  Wavelet networks , 1992, IEEE Trans. Neural Networks.

[2]  Kok Lay Teo,et al.  Nonlinear system modeling via knot-optimizing B-spline networks , 2001, IEEE Trans. Neural Networks.

[3]  Bojan Nemec,et al.  Control strategy for robotic yo-yo , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[4]  J. van Amerongen,et al.  Learning feedforward controller for a mobile robot vehicle , 1996 .

[5]  Michel Gevers,et al.  A personal view on the development of system identification 1 , 2003 .

[6]  Xiangdong Wang,et al.  Parameters identification of chaotic systems via chaotic ant swarm , 2006 .

[7]  Miriam Zacksenhouse,et al.  Oscillatory neural networks for robotic yo-yo control , 2003, IEEE Trans. Neural Networks.

[8]  Ajith Abraham,et al.  Applied Soft Computing Technologies: The Challenge of Complexity, Proceedings of the 9th Online World Conference on Soft Computing in Industrial Applications (WSC9), September 20th - October 8th, 2004, held on the World Wide Web , 2004, WSC.

[9]  V. Sree Hari Rao,et al.  Parameter identification of dynamical systems , 2005 .

[10]  George W. Irwin,et al.  Neural modelling of chemical plant using MLP and B-spline networks , 1997 .

[11]  Xuefeng F. Yan,et al.  Chaos-genetic algorithms for optimizing the operating conditions based on RBF-PLS model , 2003, Comput. Chem. Eng..

[12]  Narri Yadaiah,et al.  Neural network algorithm for parameter identification of dynamical systems involving time delays , 2007, Appl. Soft Comput..

[13]  Nicolaos B. Karayiannis,et al.  On the construction and training of reformulated radial basis function neural networks , 2003, IEEE Trans. Neural Networks.

[14]  Jun-Juh Yan,et al.  A novel stability criterion for interval time-delay chaotic systems via the evolutionary programming approach , 2006 .

[15]  R. Pearson Selecting nonlinear model structures for computer control , 2003 .

[16]  Donald F. Specht,et al.  A general regression neural network , 1991, IEEE Trans. Neural Networks.

[17]  J. W. Akitt Function Minimisation Using the Nelder and Mead Simplex Method with Limited Arithmetic Precision: The Self Regenerative Simplex , 1977, Comput. J..

[18]  Hao Ye,et al.  Fuzzy Neural Very-Short-Term Load Forecasting Based on Chaotic Dynamics Reconstruction , 2005, ISNN.

[19]  Leon O. Chua,et al.  Practical Numerical Algorithms for Chaotic Systems , 1989 .

[20]  Indra Narayan Kar,et al.  On-line system identification of complex systems using Chebyshev neural networks , 2007, Appl. Soft Comput..

[21]  Madhusudan Singh,et al.  New fuzzy wavelet neural networks for system identification and control , 2005, Appl. Soft Comput..

[22]  Toshiro Noritsugu,et al.  Modeling and Control of Robotic Yoyo with Visual Feedback , 1996 .

[23]  Leandro dos Santos Coelho,et al.  Radial basis neural network learning based on particle swarm optimization to multistep prediction of chaotic Lorenz's system , 2005, Fifth International Conference on Hybrid Intelligent Systems (HIS'05).

[24]  Hong Xie,et al.  Fuzzy logic models for ranking process effects , 1997, IEEE Trans. Fuzzy Syst..

[25]  Leandro dos Santos Coelho,et al.  Nonlinear Identification Method of a Yo-yo System Using Fuzzy Model and Fast Particle Swarm Optimisation , 2004, WSC.

[26]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[27]  Wei-Der Chang,et al.  Parameter identification of Chen and Lü systems: A differential evolution approach , 2007 .

[28]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[29]  T. Fukuda,et al.  Self-tuning fuzzy inference based on spline function , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[30]  Heinz Unbehauen,et al.  Structure identification of nonlinear dynamic systems - A survey on input/output approaches , 1990, Autom..

[31]  Chu Kiong Loo,et al.  Nonlinear dynamic system identification and control via constructivism inspired neural network , 2003, Appl. Soft Comput..

[32]  Bernard Cazelles,et al.  Extraction of nonlinear dynamics from short and noisy time series , 2001 .

[33]  Jianwei Zhang,et al.  Designing fuzzy controllers by rapid learning , 1999, Fuzzy Sets Syst..

[34]  L. Fan,et al.  An artificial neural network as a model for chaotic behavior of a three-phase fluidized bed , 2002 .

[35]  L. Shengsong,et al.  Hybrid algorithm of chaos optimisation and SLP for optimal power flow problems with multimodal characteristic , 2003 .

[36]  Kuang-Yow Lian,et al.  Synchronization with message embedded for generalized Lorenz chaotic circuits and its error analysis , 2000 .

[37]  Martin Brown,et al.  Intelligent Control - Aspects of Fuzzy Logic and Neural Nets , 1993, World Scientific Series in Robotics and Intelligent Systems.

[38]  M. Marchesi,et al.  Learning of Chua's circuit attractors by locally recurrent neural networks , 2001 .

[39]  L. Coelho,et al.  Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect , 2006, IEEE Transactions on Power Systems.

[40]  P. Akritas,et al.  Identification and prediction of discrete chaotic maps applying a Chebyshev neural network , 2000 .

[41]  Buyurman Baykal,et al.  Complexity reduction in radial basis function (RBF) networks by using radial B-spline functions , 1998, Neurocomputing.

[42]  Toshiro Noritsugu,et al.  Modeling and control of robotic yo-yo with visual feedback , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[43]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[44]  Simon Haykin,et al.  Neural networks , 1994 .

[45]  Miklós Kuczmann,et al.  Neural network model of magnetic hysteresis , 2002 .

[46]  Yanping Bai,et al.  Prediction of SARS epidemic by BP neural networks with online prediction strategy , 2005 .

[47]  Robert F. Sproull,et al.  Principles of interactive computer graphics (2nd ed.) , 1979 .

[48]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[49]  Bo Liu,et al.  Directing orbits of chaotic systems by particle swarm optimization , 2006 .

[50]  Xuefeng Yan,et al.  Corrigendum to "Chaos-genetic algorithms for optimizing the operation conditions based on RBF-PLS model" [Comput. Chem. Eng. 27(2003) 1393-1404] , 2004, Comput. Chem. Eng..

[51]  W. Chang Parameter identification of Rossler’s chaotic system by an evolutionary algorithm , 2006 .

[52]  Bo Liu,et al.  Improved particle swarm optimization combined with chaos , 2005 .

[53]  J. Yorke,et al.  Chaos: An Introduction to Dynamical Systems , 1997 .

[54]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[55]  Bing Li,et al.  Optimizing Complex Functions by Chaos Search , 1998, Cybern. Syst..

[56]  H. D. Navone,et al.  Learning chaotic dynamics by neural networks , 1995 .

[57]  Cezar Augusto Sierakowski,et al.  Particle Swarm Optimization Approach for Multi-step-ahead Prediction Using Radial Basis Function Neural Network , 2005 .

[58]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[59]  Leandro dos Santos Coelho,et al.  Fuzzy Identification Based on a Chaotic Particle Swarm Optimization Approach Applied to a Nonlinear Yo-yo Motion System , 2007, IEEE Transactions on Industrial Electronics.

[60]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[61]  K. Thamilmaran,et al.  Rich Variety of bifurcations and Chaos in a Variant of Murali-Lakshmanan-Chua Circuit , 2000, Int. J. Bifurc. Chaos.