Orbit design for future SpaceChip swarm missions in a planetary atmosphere

The effect of solar radiation pressure and atmospheric drag on the orbital dynamics of satellites-on-a-chip (SpaceChips) is exploited to design equatorial long-lived orbits about the oblate Earth. The orbit energy gain due to asymmetric solar radiation pressure, considering the Earth's shadow, is used to balance the energy loss due to atmospheric drag. Future missions for a swarm of SpaceChips are proposed, where a number of small devices are released from a conventional spacecraft to perform spatially distributed measurements of the conditions in the ionosphere and exosphere. It is shown that the orbit lifetime can be extended and indeed selected through solar radiation pressure and the end-of-life re-entry of the swarm can be ensured, by exploiting atmospheric drag.

[1]  Gabor Karsai,et al.  Smart Dust: communicating with a cubic-millimeter computer , 2001 .

[2]  C. Pardini,et al.  Long-term dynamical evolution of high area-to-mass ratio debris released into high earth orbits , 2010 .

[3]  L. M. Miller MEMS for space applications , 1999, Design, Test, Integration, and Packaging of MEMS/MOEMS.

[4]  Camilla Colombo,et al.  Optimal trajectory design for interception and deflection of Near Earth Objects , 2010 .

[5]  Xiaofeng Wu,et al.  Development of a Satellite Sensor Network for Future Space Missions , 2008, 2008 IEEE Aerospace Conference.

[6]  Martin Sweeting,et al.  Very-Small-Satellite Design for Distributed Space Missions , 2007 .

[7]  M. Peck,et al.  Length Scaling in Spacecraft Dynamics , 2011 .

[8]  Thomas F. Coleman,et al.  An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..

[9]  D. G. King-Hele,et al.  Theory of satellite orbits in an atmosphere , 1964 .

[10]  J. Burns,et al.  Charged dust dynamics: Orbital resonance due to planetary shadows , 1991 .

[11]  Silicon Satellites: Picosats, Nanosats, and Microsats , 1995 .

[12]  J. Dormand,et al.  A family of embedded Runge-Kutta formulae , 1980 .

[13]  C. McInnes,et al.  GEOSAIL: Exploring the Geomagnetic Tail Using a Small Solar Sail , 2001 .

[14]  Alessandro Rossi,et al.  Collision risk against space debris in Earth orbits , 2006 .

[15]  Colin R. McInnes,et al.  Orbital dynamics of high area-to-mass ratio spacecraft under the influence of J2 and solar radiation pressure , 2011 .

[16]  Mason A. Peck,et al.  A passive, sun-pointing, millimeter-scale solar sail , 2010 .

[17]  Colin R. McInnes,et al.  Wave-like patterns in an elliptical satellite ring , 2013 .

[18]  Alessandro Antonio Quarta,et al.  Near-Optimal Solar-Sail Orbit-Raising from Low Earth Orbit , 2005 .

[19]  Colin R. McInnes,et al.  Orbit evolution, maintenance and disposal of SpaceChip swarms , 2010 .

[20]  Kristofer S. J. Pister,et al.  MEMS for distributed wireless sensor networks , 2002, 9th International Conference on Electronics, Circuits and Systems.

[21]  Kristofer S. J. Pister,et al.  Smart Dust: Communicating with a Cubic-Millimeter Computer , 2001, Computer.

[22]  A. Krivov,et al.  Dynamics of Mars-orbiting dust: Effects of light pressure and planetary oblateness , 1995 .

[23]  Douglas P. Hamilton,et al.  Circumplanetary Dust Dynamics: Effects of Solar Gravity, Radiation Pressure, Planetary Oblateness, and Electromagnetism , 1996 .

[24]  P. Musen,et al.  Perturbations in Perigee Height of Vanguard I , 1960, Science.

[25]  Colin R. McInnes,et al.  Electrochromic orbit control for smart-dust devices , 2012 .

[26]  H. M. Jones,et al.  Orbital properties of the West Ford dipole belt , 1964 .

[27]  Juan Getino,et al.  ORBITAL EVOLUTION OF HIGH-ALTITUDE BALLOON SATELLITES , 1997 .

[28]  Colin R. McInnes,et al.  Orbital Dynamics of "Smart-Dust" Devices with Solar Radiation Pressure and Drag , 2011 .

[29]  P. Cefola,et al.  Elliptical orbit constellations-a new paradigm for higher efficiency in space systems? , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[30]  P. Musen,et al.  Perturbations in Perigee Height of Vanguard I. , 1960, Science.

[31]  Thomas F. Coleman,et al.  On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds , 1994, Math. Program..

[32]  D. Hamilton,et al.  The Asymmetric Time-Variable Rings of Mars , 1996 .

[33]  Hiroshi Yamakawa,et al.  Orbital Dynamics of Solar Sails for Geomagnetic Tail Exploration , 2008 .

[34]  I I Shapiro,et al.  Perturbations of the Orbit of the Echo Balloon , 1960, Science.

[35]  Colin R. McInnes,et al.  Orbital dynamics of earth-orbiting 'smart dust' spacecraft under the effects of solar radiation pressure and aerodynamic drag , 2010 .

[36]  Tim Flohrer,et al.  Properties of the high area-to-mass ratio space debris population at high altitudes , 2006 .

[37]  D. Vallado Fundamentals of Astrodynamics and Applications , 1997 .