Gephyrin phosphorylation facilitates sexually dimorphic development and function of parvalbumin interneurons in the mouse hippocampus.

[1]  K. Fukunaga,et al.  Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications , 2022, Signal Transduction and Targeted Therapy.

[2]  L. Coutellier,et al.  Age- and sex-specific effects of stress on parvalbumin interneurons in preclinical models: Relevance to sex differences in clinical neuropsychiatric and neurodevelopmental disorders , 2021, Neuroscience & Biobehavioral Reviews.

[3]  E. Sipos,et al.  Recurrent rewiring of the adult hippocampal mossy fiber system by a single transcriptional regulator, Id2 , 2021, Proceedings of the National Academy of Sciences.

[4]  N. Mechawar,et al.  Parvalbumin interneuron alterations in stress-related mood disorders: A systematic review , 2021, Neurobiology of Stress.

[5]  M. Snapyan,et al.  Sensitive period for rescuing parvalbumin interneurons connectivity and social behavior deficits caused by TSC1 loss , 2021, Nature Communications.

[6]  J. A. Parker,et al.  Chromatin remodeller CHD7 is required for GABAergic neuron development by promoting PAQR3 expression , 2021, EMBO reports.

[7]  M. Kennedy,et al.  Neurexin-3 defines synapse- and sex-dependent diversity of GABAergic inhibition in ventral subiculum , 2021, bioRxiv.

[8]  Yong Tang,et al.  Hippocampal PGC-1α-mediated positive effects on parvalbumin interneurons are required for the antidepressant effects of running exercise , 2021, Translational Psychiatry.

[9]  K. Tang,et al.  Interneuron development and dysfunction , 2021, The FEBS journal.

[10]  George R. Bjorklund,et al.  Hyperactive MEK1 Signaling in Cortical GABAergic Neurons Promotes Embryonic Parvalbumin Neuron Loss and Defects in Behavioral Inhibition. , 2021, Cerebral cortex.

[11]  C. Wierenga,et al.  The postnatal GABA shift: A developmental perspective , 2021, Neuroscience & Biobehavioral Reviews.

[12]  I. Chang,et al.  Impaired formation of high-order gephyrin oligomers underlies gephyrin dysfunction-associated pathologies , 2021, iScience.

[13]  Csaba Földy,et al.  Transcriptional and morphological profiling of parvalbumin interneuron subpopulations in the mouse hippocampus , 2021, Nature Communications.

[14]  F. Northington,et al.  Sex specific correlation between GABAergic disruption in the dorsal hippocampus and flurothyl seizure susceptibility after neonatal hypoxic-ischemic brain injury , 2020, Neurobiology of Disease.

[15]  Zhongming Zhao,et al.  Convergent genomic and pharmacological evidence of PI3K/GSK3 signaling alterations in neurons from schizophrenia patients , 2020, Neuropsychopharmacology.

[16]  M. Rogers,et al.  Maternal antioxidant treatment prevents the adverse effects of prenatal stress on the offspring's brain and behavior , 2020, Neurobiology of Stress.

[17]  M. Arruda-Carvalho,et al.  Sex Differences in the Development of the Rodent Corticolimbic System , 2020, Frontiers in Neuroscience.

[18]  M. Colonnese,et al.  GABAergic interneurons excite neonatal hippocampus in vivo , 2020, Science Advances.

[19]  M. C. Manzini,et al.  Molecular causes of sex‐specific deficits in rodent models of neurodevelopmental disorders , 2019, Journal of neuroscience research.

[20]  R. Cossart,et al.  GABAergic Restriction of Network Dynamics Regulates Interneuron Survival in the Developing Cortex , 2019, Neuron.

[21]  J. Rubenstein,et al.  Tsc1 represses parvalbumin expression and fast-spiking properties in somatostatin lineage cortical interneurons , 2019, Nature Communications.

[22]  J. Winterer,et al.  Single‐cell RNA‐Seq characterization of anatomically identified OLM interneurons in different transgenic mouse lines , 2019, The European journal of neuroscience.

[23]  J. McCabe,et al.  Sex differences in cued fear responses and parvalbumin cell density in the hippocampus following repetitive concussive brain injuries in C57BL/6J mice , 2019, PloS one.

[24]  J. Rubenstein,et al.  Excitation-inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders , 2019, Molecular Psychiatry.

[25]  Lauren M. Vetere,et al.  ezTrack: An open-source video analysis pipeline for the investigation of animal behavior , 2019, Scientific Reports.

[26]  L. Pacini,et al.  Disruption of mTOR and MAPK pathways correlates with severity in idiopathic autism , 2019, Translational Psychiatry.

[27]  B. Connors,et al.  Early Life Stress Drives Sex-Selective Impairment in Reversal Learning by Affecting Parvalbumin Interneurons in Orbitofrontal Cortex of Mice , 2018, Cell reports.

[28]  Oscar Marín,et al.  Development and Functional Diversification of Cortical Interneurons , 2018, Neuron.

[29]  J. Kirsch,et al.  Gephyrin: a key regulatory protein of inhibitory synapses and beyond , 2018, Histochemistry and Cell Biology.

[30]  L. Galea,et al.  Sex differences in hippocampal cognition and neurogenesis , 2018, Neuropsychopharmacology.

[31]  Wenjun Gao,et al.  PV Interneurons: Critical Regulators of E/I Balance for Prefrontal Cortex-Dependent Behavior and Psychiatric Disorders , 2018, Front. Neural Circuits.

[32]  O. Marín,et al.  Pyramidal cell regulation of interneuron survival sculpts cortical networks , 2018, Nature.

[33]  B. Schwaller,et al.  17-β estradiol increases parvalbumin levels in Pvalb heterozygous mice and attenuates behavioral phenotypes with relevance to autism core symptoms , 2018, Molecular Autism.

[34]  G. Fishell,et al.  Activity Regulates Cell Death within Cortical Interneurons through a Calcineurin-Dependent Mechanism. , 2018, Cell reports.

[35]  Jason C. Wester,et al.  Hippocampal GABAergic Inhibitory Interneurons. , 2017, Physiological reviews.

[36]  Emilia Favuzzi,et al.  Activity-Dependent Gating of Parvalbumin Interneuron Function by the Perineuronal Net Protein Brevican , 2017, Neuron.

[37]  J. Fritschy,et al.  Differential role of GABAA receptors and neuroligin 2 for perisomatic GABAergic synapse formation in the hippocampus , 2017, Brain Structure and Function.

[38]  G. Neves,et al.  Modulation of Apoptosis Controls Inhibitory Interneuron Number in the Cortex , 2017, bioRxiv.

[39]  Gord Fishell,et al.  Genetic and activity-dependent mechanisms underlying interneuron diversity , 2017, Nature Reviews Neuroscience.

[40]  Spyros Darmanis,et al.  Single-cell RNAseq reveals cell adhesion molecule profiles in electrophysiologically defined neurons , 2016, Proceedings of the National Academy of Sciences.

[41]  G. Richter-Levin,et al.  Receptor tyrosine kinase EphA7 is required for interneuron connectivity at specific subcellular compartments of granule cells , 2016, Scientific Reports.

[42]  A. Castillo-Ruiz,et al.  Cellular and molecular mechanisms of sexual differentiation in the mammalian nervous system , 2016, Frontiers in Neuroendocrinology.

[43]  P. Caroni,et al.  Early- and Late-Born Parvalbumin Basket Cell Subpopulations Exhibiting Distinct Regulation and Roles in Learning , 2015, Neuron.

[44]  D. Muller,et al.  Activity-dependent inhibitory synapse remodeling through gephyrin phosphorylation , 2014, Proceedings of the National Academy of Sciences.

[45]  Shun-ying Yu,et al.  Synaptic proteins and receptors defects in autism spectrum disorders , 2014, Front. Cell. Neurosci..

[46]  Peter Jonas,et al.  Fast-spiking, parvalbumin+ GABAergic interneurons: From cellular design to microcircuit function , 2014, Science.

[47]  M. Webster,et al.  Schizophrenia and bipolar disorder show both common and distinct changes in cortical interneuron markers , 2014, Schizophrenia Research.

[48]  J. Fritschy,et al.  Gephyrin: a master regulator of neuronal function? , 2014, Nature Reviews Neuroscience.

[49]  K. Nakazawa,et al.  Convergence of genetic and environmental factors on parvalbumin-positive interneurons in schizophrenia , 2013, Front. Behav. Neurosci..

[50]  S. Scherer,et al.  Rare exonic deletions implicate the synaptic organizer Gephyrin (GPHN) in risk for autism, schizophrenia and seizures. , 2013, Human molecular genetics.

[51]  M. Wiles,et al.  Mouse Estrous Cycle Identification Tool and Images , 2012, PloS one.

[52]  Oscar Marín,et al.  Interneuron dysfunction in psychiatric disorders , 2012, Nature Reviews Neuroscience.

[53]  William Wisden,et al.  Parvalbumin-positive CA1 interneurons are required for spatial working but not for reference memory , 2011, Nature Neuroscience.

[54]  D. Muller,et al.  Regulation of GABAergic synapse formation and plasticity by GSK3β-dependent phosphorylation of gephyrin , 2010, Proceedings of the National Academy of Sciences.

[55]  Dick F Swaab,et al.  Sex Differences in the Brain, Behavior, and Neuropsychiatric Disorders , 2010, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[56]  Allan R. Jones,et al.  A robust and high-throughput Cre reporting and characterization system for the whole mouse brain , 2009, Nature Neuroscience.

[57]  H. Manji,et al.  The extracellular signal-regulated kinase pathway contributes to the control of behavioral excitement , 2009, Molecular Psychiatry.

[58]  Peter Jonas,et al.  Differential dependence of phasic transmitter release on synaptotagmin 1 at GABAergic and glutamatergic hippocampal synapses , 2008, Proceedings of the National Academy of Sciences.

[59]  Robert J. Harvey,et al.  Gephyrin: where do we stand, where do we go? , 2008, Trends in Neurosciences.

[60]  V. Mootha,et al.  mTOR controls mitochondrial oxidative function through a YY1–PGC-1α transcriptional complex , 2007, Nature.

[61]  R. Khazipov,et al.  GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. , 2007, Physiological reviews.

[62]  A. Triller,et al.  The development of hippocampal interneurons in rodents , 2006, Hippocampus.

[63]  M. Roh,et al.  Glycogen synthase kinase-3 (GSK3) in psychiatric diseases and therapeutic interventions. , 2006, Current drug targets.

[64]  R. Mendel,et al.  Molybdenum cofactor biosynthesis and molybdenum enzymes. , 2006, Annual review of plant biology.

[65]  S. Arber,et al.  A Developmental Switch in the Response of DRG Neurons to ETS Transcription Factor Signaling , 2005, PLoS biology.

[66]  R. Huganir,et al.  MAPK cascade signalling and synaptic plasticity , 2004, Nature Reviews Neuroscience.

[67]  P. Wahle,et al.  Parvalbumin expression in visual cortical interneurons depends on neuronal activity and TrkB ligands during an Early period of postnatal development. , 2004, Cerebral cortex.

[68]  S. Snyder,et al.  Interaction of RAFT1 with gephyrin required for rapamycin-sensitive signaling. , 1999, Science.

[69]  G. Feng,et al.  Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. , 1998, Science.

[70]  I. Módy,et al.  Tonic inhibition originates from synapses close to the soma , 1995, Neuron.

[71]  S. Anderson,et al.  Fate mapping Nkx2.1‐lineage cells in the mouse telencephalon , 2008, The Journal of comparative neurology.