MAKKSim: MAS-Based Crowd Simulations for Designer's Decision Support

This paper presents MAKKSim, a pedestrian dynamics simulator based on a computational discrete model in which pedestrians are represented as utility-based agents. The computational model and the system architecture are discussed, focusing on the development of the tool and on its application in a real-word case study, for the comparison and the evaluation of different strategies of crowd management and of different structural changes on the geometry of the environment.

[1]  G. Nigel Gilbert,et al.  Simulation for the social scientist , 1999 .

[2]  Stefania Bandini,et al.  An Agent Model of Pedestrian and Group Dynamics: Experiments on Group Cohesion , 2011, AI*IA.

[3]  Roberto Pirrone,et al.  AI*IA 2011: Artificial Intelligence Around Man and Beyond - XIIth International Conference of the Italian Association for Artificial Intelligence, Palermo, Italy, September 15-17, 2011. Proceedings , 2011, AI*IA.

[4]  I. Vernersson Open University Press , 2000 .

[5]  Andreas Schadschneider,et al.  Evacuation Dynamics: Empirical Results, Modeling and Applications , 2008, Encyclopedia of Complexity and Systems Science.

[6]  Lorenza Manenti,et al.  Adaptive pedestrian behaviour for the preservation of group cohesion , 2013, Complex Adapt. Syst. Model..

[7]  Johannes Textor,et al.  HYBRID SIMULATION ALGORITHMS FOR AN AGENT-BASED MODEL OF THE IMMUNE RESPONSE , 2009, Cybern. Syst..

[8]  Demetri Terzopoulos,et al.  Autonomous pedestrians , 2007, Graph. Model..

[9]  Peter Vortisch,et al.  Comparison of Various Methods for the Calculation of the Distance Potential Field , 2008, ArXiv.

[10]  N. P. Waterson,et al.  A Comparison of Grid-based and Continuous Space Pedestrian Modelling Software: Analysis of Two UK Train Stations , 2011 .

[11]  M. Schreckenberg,et al.  Experimental study of pedestrian counterflow in a corridor , 2006, cond-mat/0609691.

[12]  Ulrich Weidmann,et al.  Transporttechnik der Fussgänger: Transporttechnische Eigenschaften des Fussgängerverkehrs, Literaturauswertung , 1992 .

[13]  Mohcine Chraibi,et al.  Efficient and validated simulation of crowds for an evacuation assistant , 2012, Comput. Animat. Virtual Worlds.

[14]  Michel C. A. Klein,et al.  Modelling collective decision making in groups and crowds: Integrating social contagion and interacting emotions, beliefs and intentions , 2013, Autonomous Agents and Multi-Agent Systems.

[15]  Michael Luck,et al.  Agent technology, Computing as Interaction , 2005 .

[16]  Ralph Johnson,et al.  design patterns elements of reusable object oriented software , 2019 .

[17]  John J. Fruin,et al.  Pedestrian planning and design , 1971 .

[18]  A. Schadschneider,et al.  Simulation of pedestrian dynamics using a two dimensional cellular automaton , 2001 .

[19]  Lorenza Manenti,et al.  MAKKSim: Dealing with Pedestrian Groups in MAS-based Crowd Simulation , 2011, WOA.

[20]  Daichi Yanagisawa,et al.  Toward Smooth Movement of Crowds , 2010 .

[21]  Hubert Ludwig Kluepfel,et al.  A Cellular automaton model for crowd movement and egress simulation , 2003 .