Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors

Colorimetric sensing, which transduces environmental changes into visible color changes, provides a simple yet powerful detection mechanism that is well-suited to the development of low-cost and low-power sensors. A new approach in colorimetric sensing exploits the structural color of photonic crystals (PCs) to create environmentally-influenced color-changeable materials. PCs are composed of periodic dielectrics or metallo-dielectric nanostructures that affect the propagation of electromagnetic waves (EM) by defining the allowed and forbidden photonic bands. Simultaneously, an amazing variety of naturally occurring biological systems exhibit iridescent color due to the presence of PC structures throughout multi-dimensional space. In particular, some kinds of the structural colors in living organisms can be reversibly changed in reaction to external stimuli. Based on the lessons learned from natural photonic structures, some specific examples of PCs-based colorimetric sensors are presented in detail to demonstrate their unprecedented potential in practical applications, such as the detections of temperature, pH, ionic species, solvents, vapor, humidity, pressure and biomolecules. The combination of the nanofabrication technique, useful design methodologies inspired by biological systems and colorimetric sensing will lead to substantial developments in low-cost, miniaturized and widely deployable optical sensors.

[1]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[2]  Kazunori Kataoka,et al.  Simple and precise preparation of a porous gel for a colorimetric glucose sensor by a templating technique. , 2003, Angewandte Chemie.

[3]  Tsutomu Sawada,et al.  Photonic rubber sheets with tunable color by elastic deformation. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[4]  Michael F. Land,et al.  A Multilayer Interference Reflector in the Eye of the Scallop, Pecten Maximus , 1966 .

[5]  Hong Wang,et al.  Microfluidic fabrication and thermoreversible response of core/shell photonic crystalline microspheres based on deformable nanogels. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[6]  Georg von Freymann,et al.  Mesoporous bragg stack color tunable sensors. , 2006, Nano letters.

[7]  J. Holtz,et al.  Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials , 1998 .

[8]  Lei Shi,et al.  Iridescence in the neck feathers of domestic pigeons. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  L. Liang,et al.  A Combined Physical–Chemical Polymerization Process for Fabrication of Nanoparticle–Hydrogel Sensing Materials , 2012 .

[10]  Younan Xia,et al.  Photonic crystals with thermally switchable stop bands fabricated from Se@Ag2Se spherical colloids. , 2005, Angewandte Chemie.

[11]  Sung Yeon Kim,et al.  Colorimetric and resistive polymer electrolyte thin films for real-time humidity sensors. , 2012, ACS applied materials & interfaces.

[12]  Jeremy J. Baumberg,et al.  Pointillist structural color in Pollia fruit , 2012, Proceedings of the National Academy of Sciences.

[13]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[14]  Hao Zhang,et al.  Bioinspired Water‐Vapor‐Responsive Organic/Inorganic Hybrid One‐Dimensional Photonic Crystals with Tunable Full‐Color Stop Band , 2010 .

[15]  David L. Kaplan,et al.  Silk inverse opals , 2012, Nature Photonics.

[16]  Masayoshi Watanabe,et al.  Template Synthesis and Optical Properties of Chameleonic Poly(N‐isopropylacrylamide) Gels Using Closest‐Packed Self‐Assembled Colloidal Silica Crystals , 2003 .

[17]  Julia Shand,et al.  The Structural Basis for Iridescent Colour Changes in Dermal and Corneal Irddophores in Fish , 1989 .

[18]  X. Zhao,et al.  Artificial Defect Engineering in Three‐Dimensional Colloidal Photonic Crystals , 2007 .

[19]  F. J. López-Alcaraz,et al.  Nanoparticle-based One-dimensional Photonic Crystals , 2022 .

[20]  Andreas Stein,et al.  Tunable Colors in Opals and Inverse Opal Photonic Crystals , 2010 .

[21]  André C. Arsenault,et al.  Photonic-crystal full-colour displays , 2007 .

[22]  A. Parker,et al.  Aphrodite's iridescence , 2001 .

[23]  J. Sambles,et al.  Photonic structures in biology , 2003, Nature.

[24]  J. Rühe,et al.  Tunable Bragg filters based on polymer swelling. , 2006, Applied optics.

[25]  Thomas Hirsch,et al.  Optical sensing of the ionic strength using photonic crystals in a hydrogel matrix. , 2013, ACS applied materials & interfaces.

[26]  Feng Liu,et al.  Inconspicuous structural coloration in the elytra of beetles Chlorophila obscuripennis (Coleoptera). , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Duggento Andrea,et al.  非定常動力学に対する推論の枠組 II 生理学的シグナリングモデルへの応用 , 2008 .

[28]  Hui Cao,et al.  Self-assembly of amorphous biophotonic nanostructures by phase separation , 2009 .

[29]  Eugenia Kumacheva,et al.  Nanostructured polymers for photonics , 2008 .

[30]  Sanford A. Asher,et al.  Photonic Crystal Chemical Sensors: pH and Ionic Strength , 2000 .

[31]  D R McKenzie,et al.  Photonic engineering. Aphrodite's iridescence. , 2001, Nature.

[32]  Michael J. Brett,et al.  Optimized Colorimetric Photonic‐Crystal Humidity Sensor Fabricated Using Glancing Angle Deposition , 2011 .

[33]  Zhong-Ze Gu,et al.  Multiplex label-free detection of biomolecules with an imprinted suspension array. , 2009, Angewandte Chemie.

[34]  S. Asher,et al.  Nanogel nanosecond photonic crystal optical switching. , 2004, Journal of the American Chemical Society.

[35]  J. R. Sambles,et al.  Structural colour: Colour mixing in wing scales of a butterfly , 2000, Nature.

[36]  B. Viel,et al.  Reversible Deformation of Opal Elastomers , 2007 .

[37]  S. John,et al.  Why trap light? , 2012, Nature materials.

[38]  Paul V. Braun,et al.  Tunable Inverse Opal Hydrogel pH Sensors , 2003 .

[39]  Yanlin Song,et al.  A colorful oil-sensitive carbon inverse opal , 2008 .

[40]  A. Blaaderen Opals in a New Light , 1998 .

[41]  Bing Yu,et al.  Imitation of variable structural color in Paracheirodon innesi using colloidal crystal films. , 2011, Optics express.

[42]  E. Thomas,et al.  Thermochromic Block Copolymer Photonic Gel , 2008 .

[43]  Yadong Yin,et al.  Responsive photonic crystals. , 2011, Angewandte Chemie.

[44]  Ludovico Cademartiri,et al.  From colour fingerprinting to the control of photoluminescence in elastic photonic crystals , 2006 .

[45]  E. Thomas,et al.  Broad-wavelength-range chemically tunable block-copolymer photonic gels. , 2007, Nature materials.

[46]  Feng Liu,et al.  Ultranegative angular dispersion of diffraction in quasiordered biophotonic structures. , 2011, Optics express.

[47]  Paolo Lugli,et al.  Humidity-Enhanced Thermally Tunable TiO2/SiO2 Bragg Stacks , 2012 .

[48]  Joanna Aizenberg,et al.  Encoding complex wettability patterns in chemically functionalized 3D photonic crystals. , 2011, Journal of the American Chemical Society.

[49]  J. Zi,et al.  Coloration strategies in peacock feathers , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Jennifer N Cha,et al.  Discovery of a diamond-based photonic crystal structure in beetle scales. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  S. Asher,et al.  Acetylcholinesterase-based organophosphate nerve agent sensing photonic crystal. , 2005, Analytical chemistry.

[52]  Simon Breslav,et al.  Towards the Photonic Nose: A Novel Platform for Molecule and Bacteria Identification , 2010, Advanced materials.

[53]  Fei Dou,et al.  A Biosensor Based on Metallic Photonic Crystals for the Detection of Specific Bioreactions , 2011 .

[54]  Lei Jiang,et al.  Colorful humidity sensitive photonic crystal hydrogel , 2008 .

[55]  Zhongze Gu,et al.  Photonic Crystals in Bioassays , 2010 .

[56]  Hiroshi Segawa,et al.  Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure. , 2004, Journal of the American Chemical Society.

[57]  Zhongze Gu,et al.  Bio-inspired variable structural color materials. , 2012, Chemical Society reviews.

[58]  Hisashi Saito,et al.  Simple and precision design of porous gel as a visible indicator for ionic species and concentration. , 2003, Chemical communications.

[59]  E. Thomas,et al.  Block Copolymer Photonic Gel for Mechanochromic Sensing , 2011, Advanced materials.

[60]  M. Land,et al.  Rapid colour changes in multilayer reflecting stripes in the paradise whiptail, Pentapodus paradiseus , 2003, Journal of Experimental Biology.

[61]  E Yablonovitch In the limelight. Interview by Kosmas Tsakmakidis. , 2012, Nature materials.

[62]  X. H. Liu,et al.  Structural color change in longhorn beetles Tmesisternus isabellae. , 2009, Optics express.

[63]  Shuichi Kinoshita,et al.  Structural colors in nature: the role of regularity and irregularity in the structure. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[64]  Ryan C Hayward,et al.  Photonic Multilayer Sensors from Photo‐Crosslinkable Polymer Films , 2012, Advanced materials.

[65]  Zhongze Gu,et al.  Quantum‐Dot‐Tagged Bioresponsive Hydrogel Suspension Array for Multiplex Label‐Free DNA Detection , 2010 .

[66]  Lars Chittka,et al.  Floral Iridescence, Produced by Diffractive Optics, Acts As a Cue for Animal Pollinators , 2009, Science.

[67]  Jae-Hwang Lee,et al.  Dynamic swelling of tunable full-color block copolymer photonic gels via counterion exchange. , 2012, ACS nano.

[68]  Andrew R. Parker,et al.  Structural colour: Opal analogue discovered in a weevil , 2003, Nature.

[69]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.