A comparative study on the effect of Curcumin and Chlorin-p6 on the transport of the LDS cation across a negatively charged POPG bilayer: Effect of pH.

[1]  Punit Gupta,et al.  A comparative study on the effect of Curcumin and Chlorin-p6 on the diffusion of two organic cations across a negatively charged lipid bilayer probed by second harmonic spectroscopy , 2014 .

[2]  R. Saini,et al.  Effect of curcumin on the diffusion kinetics of a hemicyanine dye, LDS-698, across a lipid bilayer probed by second harmonic spectroscopy. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[3]  Liang Shen,et al.  Low stability remedies the low bioavailability of curcumin , 2012 .

[4]  C. Schneider,et al.  Vanillin and ferulic acid: not the major degradation products of curcumin. , 2012, Trends in molecular medicine.

[5]  P. Gupta,et al.  Diffusion of chlorin-p6 across phosphatidyl choline liposome bilayer probed by second harmonic generation. , 2012, The journal of physical chemistry. B.

[6]  Liang Shen,et al.  The pharmacology of curcumin: is it the degradation products? , 2012, Trends in molecular medicine.

[7]  A. Ausili,et al.  Curcumin disorders 1,2-dipalmitoyl-sn-glycero-3-phosphocholine membranes and favors the formation of nonlamellar structures by 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine. , 2010, The journal of physical chemistry. B.

[8]  Tak W. Kee,et al.  The role of charge in the surfactant-assisted stabilization of the natural product curcumin. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[9]  V. Labhasetwar,et al.  Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery. , 2009, Molecular pharmaceutics.

[10]  J. Brender,et al.  Determining the effects of lipophilic drugs on membrane structure by solid-state NMR spectroscopy: the case of the antioxidant curcumin. , 2009, Journal of the American Chemical Society.

[11]  Tak W. Kee,et al.  Effective stabilization of curcumin by association to plasma proteins: human serum albumin and fibrinogen. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[12]  K. Eisenthal,et al.  Second harmonic studies of ions crossing liposome membranes in real time. , 2008, The journal of physical chemistry. B.

[13]  Yen Sun,et al.  The bound states of amphipathic drugs in lipid bilayers: study of curcumin. , 2008, Biophysical journal.

[14]  Yen Sun,et al.  Membrane-thinning effect of curcumin. , 2008, Biophysical journal.

[15]  Tak W. Kee,et al.  Encapsulation of curcumin in cationic micelles suppresses alkaline hydrolysis. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[16]  N. Huilgol,et al.  Effect of Fluidizing Agents on Paclitaxel Penetration in Cervical Cancerous Monolayer Membranes , 2007, Journal of Membrane Biology.

[17]  N. Huilgol,et al.  Comparison of paclitaxel penetration in normal and cancerous cervical model monolayer membranes. , 2006, Colloids and surfaces. B, Biointerfaces.

[18]  R. Pandey,et al.  Transport of liposomal and albumin loaded curcumin to living cells: an absorption and fluorescence spectroscopic study. , 2006, Biochimica et biophysica acta.

[19]  N. Mrabet,et al.  Interactions of a fungistatic antibiotic, griseofulvin, with phospholipid monolayers used as models of biological membranes. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[20]  K. Eisenthal,et al.  Antibiotic assisted molecular ion transport across a membrane in real time. , 2005, Faraday discussions.

[21]  P. Gupta,et al.  pH dependent binding of chlorin-p6 with phosphatidyl choline liposomes , 2005 .

[22]  Y. Dufrêne,et al.  Interaction of the Macrolide Antibiotic Azithromycin with Lipid Bilayers: Effect on Membrane Organization, Fluidity, and Permeability , 2005, Pharmaceutical Research.

[23]  P. Escribá,et al.  The hypotensive drug 2-hydroxyoleic acid modifies the structural properties of model membranes , 2004, Molecular membrane biology.

[24]  M. Ramírez-Silva,et al.  Determination of acidity constants of curcumin in aqueous solution and apparent rate constant of its decomposition. , 2004, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[25]  M. Tabak,et al.  Interaction of two phenothiazine derivatives with phospholipid monolayers. , 2004, Biophysical chemistry.

[26]  M. Cabañas,et al.  Interaction of 6-fluoroquinolones with dipalmitoylphosphatidylcholine monolayers and liposomes , 2002 .

[27]  P. Gupta,et al.  The Effect of pH and Surfactant on the Aggregation Behavior of Chlorin p6: A Fluorescence Spectroscopic Study¶ , 2002, Photochemistry and photobiology.

[28]  Ke Gong,et al.  Molecular interactions between a lipid and an antineoplastic drug paclitaxel (taxol) within the lipid monolayer at the air/water interface , 2002 .

[29]  H. Holmsen,et al.  Chlorpromazine-induced increase in dipalmitoylphosphatidylserine surface area in monolayers at room temperature. , 2001, Biochemical pharmacology.

[30]  K. Eisenthal,et al.  Effects of bilayer surface charge density on molecular adsorption and transport across liposome bilayers. , 2001, Biophysical journal.

[31]  K. Eisenthal,et al.  Effect of cholesterol on molecular transport of organic cations across liposome bilayers probed by second harmonic generation. , 2000, Biophysical journal.

[32]  E. Sudharshan,et al.  Interaction of curcumin with phosphatidylcholine: A spectrofluorometric study. , 1999, Journal of agricultural and food chemistry.

[33]  K. Eisenthal,et al.  Kinetics of molecular transport across a liposome bilayer , 1998 .

[34]  T. Yue,et al.  Carvedilol-liposome interaction: evidence for strong association with the hydrophobic region of the lipid bilayers. , 1996, Biochimica et biophysica acta.

[35]  Faraday Discuss , 1985 .