Cinnabarinic acid from Trametes coccinea fruiting bodies exhibits antibacterial activity through inhibiting the biofilm formation

[1]  T. Gautom,et al.  Prodigiosin from an Endofungal Bacterium Serratia marcescens D1 Inhibits Biofilm Formation in Gram-Positive Bacteria , 2021, Microbiology.

[2]  M. Barooah,et al.  Fungal interactions induce changes in hyphal morphology and enzyme production , 2021, Mycology.

[3]  M. Modi,et al.  Genetic Diversity and DNA Barcoding of Wild Mushrooms from Northeast India , 2021, Iranian Journal of Science and Technology, Transactions A: Science.

[4]  F. Cirlincione,et al.  Medicinal Mushrooms: Bioactive Compounds, Use, and Clinical Trials , 2021, International journal of molecular sciences.

[5]  Yan Zhang,et al.  Comparative Genomics Uncovers the Genetic Diversity and Synthetic Biology of Secondary Metabolite Production of Trametes , 2020, Mycobiology.

[6]  Hong-bo Hu,et al.  Synthesis of cinnabarinic acid by metabolically engineered Pseudomonas chlororaphis GP72 , 2019, Biotechnology and bioengineering.

[7]  S. Singh,et al.  Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents , 2017, The open microbiology journal.

[8]  C. Patil,et al.  Antimicrobial activity of prodigiosin is attributable to plasma-membrane damage , 2017, Natural product research.

[9]  H. K. Manonmani,et al.  Prodigiosin inhibits motility and activates bacterial cell death revealing molecular biomarkers of programmed cell death , 2016, AMB Express.

[10]  J. Tebben,et al.  Serratia Secondary Metabolite Prodigiosin Inhibits Pseudomonas aeruginosa Biofilm Development by Producing Reactive Oxygen Species that Damage Biological Molecules , 2016, Front. Microbiol..

[11]  N. Gautam,et al.  Chemical, Bioactive, and Antioxidant Potential of Twenty Wild Culinary Mushroom Species , 2015, BioMed research international.

[12]  Jun Lin,et al.  Mechanisms of antibiotic resistance , 2015, Front. Microbiol..

[13]  L. Overman,et al.  Enantioselective total syntheses of plectosphaeroic acids B and C. , 2013, The Journal of organic chemistry.

[14]  F. Nicoletti,et al.  Cinnabarinic Acid, an Endogenous Metabolite of the Kynurenine Pathway, Activates Type 4 Metabotropic Glutamate Receptors , 2012, Molecular Pharmacology.

[15]  R. Courtecuisse,et al.  Molecular phylogeny of Trametes and related genera, and description of a new genus Leiotrametes , 2012, Fungal Diversity.

[16]  J. Sigoillot,et al.  Peculiarities of Pycnoporus species for applications in biotechnology , 2011, Applied Microbiology and Biotechnology.

[17]  G. O’Toole Microtiter dish biofilm formation assay. , 2011, Journal of visualized experiments : JoVE.

[18]  Thomas Bjarnsholt,et al.  Antibiotic resistance of bacterial biofilms. , 2010, International journal of antimicrobial agents.

[19]  Rosário Oliveira,et al.  Effect of Farnesol on Planktonic and Biofilm Cells of Staphylococcus epidermidis , 2009, Current Microbiology.

[20]  T. Ng,et al.  Ganodermin, an antifungal protein from fruiting bodies of the medicinal mushroom Ganoderma lucidum , 2006, Peptides.

[21]  M. Rai,et al.  Therapeutic Potential of Mushrooms , 2005 .

[22]  Fei Wang,et al.  Rufuslactone, a New Antifungal Sesquiterpene from the Fruiting Bodies of the Basidiomycete Lactarius rufus , 2005, The Journal of Antibiotics.

[23]  B. Wickes,et al.  Inhibition of Candida albicans Biofilm Formation by Farnesol, a Quorum-Sensing Molecule , 2002, Applied and Environmental Microbiology.

[24]  J. Costerton,et al.  Antibiotic resistance of bacteria in biofilms , 2001, The Lancet.

[25]  C. Eggert Laccase-catalyzed formation of cinnabarinic acid is responsible for antibacterial activity of Pycnoporus cinnabarinus. , 1997, Microbiological research.

[26]  U. Temp,et al.  A fungal metabolite mediates degradation of non‐phenolic lignin structures and synthetic lignin by laccase , 1996, FEBS letters.

[27]  U. Temp,et al.  Laccase‐mediated formation of the phenoxazinone derivative, cinnabarinic acid , 1995, FEBS letters.

[28]  F. S. Cruz,et al.  Antibacterial activity of a substance produced by the fungus Pycnoporus sanguineus (Fr.) Murr. , 1995, Journal of ethnopharmacology.

[29]  G. Sullivan,et al.  Occurrence and distribution of phenoxazinone pigments in the genus Pycnoporus. , 1971, Journal of pharmaceutical sciences.

[30]  M. Téllez-Téllez Mycosphere essay 11: fungi of pycnoporus: morphological and molecular identification, worldwide distribution and biotechnological potential , 2016 .

[31]  Toshiaki Hara,et al.  Cinnabarinic acid generated from 3‐hydroxyanthranilic acid strongly induces apoptosis in thymocytes through the generation of reactive oxygen species and the induction of caspase , 2008, Journal of cellular biochemistry.