Continuous flow homogeneous alkene metathesis with built-in catalyst separation

Continuous flow homogeneous alkene metathesis using a supported ionic liquid phase (SILP) catalyst with CO2 as a transport vector allows the self-metathesis of methyl oleate with only a slight loss of activity for at least 10 h; cross-metathesis of dimethyl maleate with methyl oleate ceases after 3 h, but the catalyst remains active for methyl oleate metathesis. The reasons for this unusual behaviour are explored and a practical system for the cross-metathesis of methyl oleate with dimethyl maleate, under batch conditions, is described.

[1]  M. Buchmeiser,et al.  Monolithic Materials: New High-Performance Supports for Permanently Immobilized Metathesis Catalysts. , 2001, Angewandte Chemie.

[2]  S. Blechert,et al.  Jüngste Entwicklungen bei der gekreuzten Olefinmetathese , 2003 .

[3]  I. Nakamura,et al.  Transition-metal-catalyzed reactions in heterocyclic synthesis. , 2004, Chemical reviews.

[4]  C. P. Mehnert Supported ionic liquid catalysis. , 2004, Chemistry.

[5]  Andreas Kirschning,et al.  Continuous flow techniques in organic synthesis. , 2003, Chemistry.

[6]  P. B. Webb,et al.  Continuous flow homogeneous hydroformylation of alkenes using supercritical fluids , 2005 .

[7]  Raymond A. Cook,et al.  Supported ionic liquid catalysis investigated for hydrogenation reactions. , 2002, Chemical communications.

[8]  R. Grubbs,et al.  The development of L2X2Ru=CHR olefin metathesis catalysts: an organometallic success story. , 2001, Accounts of chemical research.

[9]  S. Nolan,et al.  Ionic Liquid Anchored “Boomerang” Catalysts Bearing Saturated and Unsaturated NHCs: Recyclability in Biphasic Media for Cross-Metathesis , 2008 .

[10]  W. Leitner,et al.  Continuous Enantioselective Hydrogenation with a Molecular Catalyst in Supported Ionic Liquid Phase under Supercritical CO2 Flow , 2010 .

[11]  P. Śledź,et al.  Olefin metathesis in ionic liquids. , 2008, Chemical Society reviews.

[12]  Xudong Wei,et al.  Efficient large-scale synthesis of BILN 2061, a potent HCV protease inhibitor, by a convergent approach based on ring-closing metathesis. , 2006, The Journal of organic chemistry.

[13]  D. Cole-Hamilton,et al.  Dicarboxylic acid esters from the carbonylation of unsaturated esters under mild conditions , 2005 .

[14]  S. Diver Ruthenium Vinyl Carbene Intermediates in Enyne Metathesis. , 2007, Coordination chemistry reviews.

[15]  P. Wasserscheid,et al.  Ultra‐Low‐Temperature Water–Gas Shift Catalysis using Supported Ionic Liquid Phase (SILP) Materials* , 2010 .

[16]  K. Grela,et al.  Ruthenium-based olefin metathesis catalysts bearing N-heterocyclic carbene ligands. , 2009, Chemical reviews.

[17]  M. Mauduit,et al.  Ring-closing metathesis in biphasic BMI.PF6 ionic liquid/toluene medium: a powerful recyclable and environmentally friendly process. , 2004, Chemical communications.

[18]  J. P. Harrity,et al.  A Recyclable Ru-Based Metathesis Catalyst , 1999 .

[19]  W. R. Jackson,et al.  A one pot, metathesis-hydrogenation sequence for the selective formation of carbon-carbon bonds. , 2005, Chemical Communications.

[20]  W. R. Jackson,et al.  High conversion and productive catalyst turnovers in cross-metathesis reactions of natural oils with 2-butene , 2006 .

[21]  P. Jacobs,et al.  Silica Immobilized Second Generation Hoveyda‐Grubbs: A Convenient, Recyclable and Storageable Heterogeneous Solid Catalyst , 2008 .

[22]  W. R. Jackson,et al.  Cross-metathesis of unsaturated natural oils with 2-butene. High conversion and productive catalyst turnovers. , 2005, Chemical communications.

[23]  M. Meier,et al.  Metathesis as a versatile tool in oleochemistry , 2008 .

[24]  C. Santini,et al.  Supported ionic liquid phase catalysis with supercritical flow. , 2007, Chemical communications.

[25]  K. Nicolaou,et al.  Metathesereaktionen in der Totalsynthese , 2005 .

[26]  P. Hanson,et al.  Synthesis of phosphorus and sulfur heterocycles via ring-closing olefin metathesis. , 2004, Chemical reviews.

[27]  Timothy J. Donohoe,et al.  Ringschlussmetathese: ein Schlüssel zur Arensynthese , 2006 .

[28]  R. Grubbs,et al.  Decomposition of ruthenium olefin metathesis catalysts. , 2007, Journal of the American Chemical Society.

[29]  Deryn E. Fogg and Jay C. Conrad Ruthenium-Catalyzed Ring-Closing Metathesis: Recent Advances, Limitations and Opportunities , 2006 .

[30]  M. Mauduit,et al.  Olefin metathesis in room temperature ionic liquids using imidazolium-tagged ruthenium complexes , 2005 .

[31]  S. Diver,et al.  Enyne metathesis (enyne bond reorganization). , 2004, Chemical reviews.

[32]  Ana Serbanovic,et al.  Continuous flow hydroformylation using supported ionic liquid phase catalysts with carbon dioxide as a carrier. , 2010, Dalton transactions.

[33]  M. Buchmeiser,et al.  Heterogenization of a Modified Grubbs–Hoveyda Catalyst on a ROMP‐Derived Monolithic Support , 2003 .

[34]  A. Riisager,et al.  Continuous Gas‐Phase Hydroformylation of 1‐Butene using Supported Ionic Liquid Phase (SILP) Catalysts , 2007 .

[35]  J. Mol,et al.  Catalytic Metathesis of Unsaturated Fatty Acid Esters and Oils , 2004 .

[36]  Andreas Kirschning,et al.  A new concept for the noncovalent binding of a ruthenium-based olefin metathesis catalyst to polymeric phases: preparation of a catalyst on Raschig rings. , 2006, Journal of the American Chemical Society.

[37]  H. Plenio,et al.  How important is the release-return mechanism in olefin metathesis? , 2010, Chemistry.

[38]  M. Mori,et al.  Synthesis of natural products and related compounds using enyne metathesis , 2007 .

[39]  M. Mauduit,et al.  An ionic liquid-supported ruthenium carbene complex: a robust and recyclable catalyst for ring-closing olefin metathesis in ionic liquids. , 2003, Journal of the American Chemical Society.

[40]  W. Keim,et al.  Mechanistic approaches and high pressure homogeneous hydrogenation of carbon monoxide , 1981 .

[41]  Steven P. Nolan,et al.  Nachhaltige Konzepte in der Olefinmetathese , 2007 .

[42]  K. Ebert,et al.  Batchwise and continuous organophilic nanofiltration of Grubbs-type olefin metathesis catalysts. , 2009, Chemistry.

[43]  Alexander Deiters,et al.  Synthesis of oxygen- and nitrogen-containing heterocycles by ring-closing metathesis. , 2004, Chemical reviews.

[44]  P. B. Webb,et al.  Continuous flow homogeneous catalysis: hydroformylation of alkenes in supercritical fluid–ionic liquid biphasic mixtures , 2001 .

[45]  Raymond A. Cook,et al.  Supported ionic liquid catalysis--a new concept for homogeneous hydroformylation catalysis. , 2002, Journal of the American Chemical Society.

[46]  M. Buchmeiser Polymer-supported well-defined metathesis catalysts. , 2009, Chemical reviews.

[47]  A. Behr,et al.  Catalytic Processes for the Technical Use of Natural Fats and Oils , 2008 .

[48]  W. R. Jackson,et al.  Preparation of terminal oxygenates from renewable natural oils by a one-pot metathesis–isomerisation–methoxycarbonylation–transesterification reaction sequence , 2006 .

[49]  Thomas Nicola,et al.  First Scale-Up to Production Scale of a Ring Closing Metathesis Reaction Forming a 15-Membered Macrocycle as a Precursor of an Active Pharmaceutical Ingredient , 2005 .

[50]  R. Grubbs,et al.  Living ring-opening metathesis polymerization , 2007 .

[51]  D. Cole-Hamilton,et al.  Highly selective formation of linear esters from terminal and internal alkenes catalysed by palladium complexes of bis-(di-tert-butylphosphinomethyl)benzene. , 2004, Chemical communications.

[52]  M. Poirier,et al.  Olefin ring-closing metathesis as a powerful tool in drug discovery and development – potent macrocyclic inhibitors of the hepatitis C virus NS3 protease , 2006 .

[53]  A. Slawin,et al.  Continuous flow hydroformylation of alkenes in supercritical fluid-ionic liquid biphasic systems. , 2003, Journal of the American Chemical Society.

[54]  Andreas Kirschning,et al.  Combining enabling techniques in organic synthesis: continuous flow processes with heterogenized catalysts. , 2006, Chemistry.