Surface plasma actuators modeling for flow control

Abstract The surface plasma actuators over the entire speed region have been intensely investigated for flow control. Most of the fundamental phenomena have been firmly identified by experimental observations but ambiguities still remained. The direct computational simulation for multiple microdischarges is presently beyond our reach, thus the essential physics may be better understood on the framework of physics-based modeling. To achieve this objective, the drift-diffusion approximation is adopted as a transport property approximation to the nonequilibrium air plasma. The most challenging issue of electron impact ionization process at the low-temperature environment is addressed by the Townsend mechanism together with electron attachment, detachment, bulk, and ion–ion recombination. The effects and quantifications of Joule heating, periodic electrostatic force, as well as, the Lorentz acceleration for flow control are examined. The clarification to the hot spot of heat transfer in direct current discharge and the orientations of the periodic force associated with AC cycle of dielectric barrier discharge are also included.

[1]  P. Huang,et al.  Electrodynamic force of dielectric barrier discharge , 2011 .

[2]  Computational electrodynamic simulation of direct current discharge , 2009 .

[3]  A. Kuranov,et al.  2D Simulation and Scaling of DBD Plasma Actuator in Air , 2008 .

[4]  James Menart,et al.  Rotational and Vibrational Temperature Distributions for a Dielectric Barrier Discharge in Air , 2009 .

[5]  Noah Hershkowitz,et al.  Force measurements of single and double barrier DBD plasma actuators in quiescent air , 2008 .

[6]  S. Surzhikov,et al.  Nonequilibrium radiative hypersonic flow simulation , 2012 .

[7]  J. Shang,et al.  Hypersonic Flow Control Using Surface Plasma Actuator , 2008 .

[8]  R. Miles,et al.  Magnetohydrodynamic Control of Hypersonic Flows and Scramjet Inlets Using Electron Beam Ionization , 2002 .

[9]  Subrata Roy,et al.  Modeling plasma actuators with air chemistry for effective flow control , 2007 .

[10]  T. Corke,et al.  SDBD plasma enhanced aerodynamics: concepts, optimization and applications , 2007 .

[11]  S. Surzhikov,et al.  Hypersonic Nonequilibrium Flow Simulation Based on Kinetic Models , 2012 .

[12]  T. Abe,et al.  Model surface conductivity effect for the electromagnetic heat shield in re-entry flight , 2008 .

[13]  Thomas McLaughlin,et al.  Time-correlated force production measurements of the dielectric barrier discharge plasma aerodynamic actuator , 2008 .

[14]  James Menart,et al.  Effect of magnetic fields on surface plasma discharges at Mach 5 , 2006 .

[15]  Mikhail N. Shneider,et al.  Modeling of dielectric barrier discharge plasma actuator in air , 2008 .

[16]  L. C. Pitchford,et al.  Electrohydrodynamic force in dielectric barrier discharge plasma actuators , 2007 .

[17]  L. C. Pitchford,et al.  Electrohydrodynamic force and aerodynamic flow acceleration in surface dielectric barrier discharge , 2005 .

[18]  Mikhail N. Shneider,et al.  Surface charge in dielectric barrier discharge plasma actuators , 2008 .

[19]  Savino Longo,et al.  Collision Integrals of High-Temperature Air Species , 2000 .

[20]  H. L. Stone ITERATIVE SOLUTION OF IMPLICIT APPROXIMATIONS OF MULTIDIMENSIONAL PARTIAL DIFFERENTIAL EQUATIONS , 1968 .

[21]  N. Gherardi,et al.  Transition from glow silent discharge to micro-discharges in nitrogen gas , 2000 .

[22]  D. Gaitonde,et al.  Mechanisms of plasma actuators for hypersonic flow control , 2005 .

[23]  S. Wilkinson,et al.  Dielectric Barrier Discharge Plasma Actuators for Flow Control , 2010 .

[24]  J. Behnke,et al.  Influence of interaction between charged particles and dielectric surface over a homogeneous barrier discharge in nitrogen , 2002 .

[25]  Eric Moreau,et al.  Airflow control by non-thermal plasma actuators , 2007 .

[26]  G. Pietsch,et al.  Dynamics of dielectric barrier discharges in coplanar arrangements , 2004 .

[27]  R. Ziemer,et al.  Experimental Investigation in Magneto-Aerodynamics , 1959 .

[28]  Joseph S. Shang,et al.  Solving Schemes for Computational Magneto-Aerodynamics , 2005, J. Sci. Comput..

[29]  S. Surzhikov,et al.  A two-dimensional model of glow discharge in view of vibrational excitation of molecular nitrogen , 2006 .

[30]  H. C. Yee,et al.  Linearized form of implicit TVD schemes for the multidimensional Euler and Navier-Stokes equations , 1986 .

[31]  A. Kudryavtsev,et al.  On the accuracy and reliability of different fluid models of the direct current glow discharge , 2012 .

[32]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[33]  Wei Shyy,et al.  Modeling of dielectric barrier discharge-induced fluid dynamics and heat transfer , 2008 .

[34]  S. Surzhikov,et al.  MULTI-FLUID MODEL OF WEAKLY IONIZED ELECTRO-NEGATIVE GAS , 2004 .

[35]  P. Huang,et al.  Modeling of ac dielectric barrier discharge , 2010 .

[36]  S. Surzhikov,et al.  Two-component plasma model for two-dimensional glow discharge in magnetic field , 2004 .

[37]  Iu. P. Raizer Gas Discharge Physics , 1991 .

[38]  Gerry E. Schneider,et al.  A MODIFIED STRONGLY IMPLICIT PROCEDURE FOR THE NUMERICAL SOLUTION OF FIELD PROBLEMS , 1981 .

[39]  S. Starikovskaia,et al.  Role of photoionization processes in propagation of cathode-directed streamer , 2001 .

[40]  C. Mayoux,et al.  Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier , 1998 .

[41]  A. M. Howatson,et al.  Introduction to gas discharges , 1965 .

[42]  Sergey B. Leonov,et al.  Effect of Electrical Discharge on Separation Processes and Shocks Position in Supersonic Airflow. , 2002 .

[43]  Ulrich Kogelschatz,et al.  Nonequilibrium volume plasma chemical processing , 1991 .

[44]  P. Huang,et al.  Periodic Electrodynamic Field of Dielectric Barrier Discharge , 2010 .

[45]  Noah Hershkowitz,et al.  Modelling of dielectric barrier discharge plasma actuators with thick electrodes , 2011 .

[46]  E. Jumper,et al.  Mechanisms and Responses of a Dielectric Barrier Plasma Actuator: Geometric Effects , 2004 .

[47]  Joseph Shang,et al.  Shared knowledge in computational fluid dynamics, electromagnetics, and magneto-aerodynamics , 2001 .

[48]  Ali Gülhan,et al.  Experimental Verification of Heat-Flux Mitigation by Electromagnetic Fields in Partially-Ionized-Argon Flows , 2009 .

[49]  K. Jensen,et al.  A Continuum Model of DC and RF Discharges , 1986, IEEE Transactions on Plasma Science.

[50]  J. M. Park,et al.  Numerical simulation on mode transition of atmospheric dielectric barrier discharge in helium-oxygen mixture , 2005 .

[51]  J. Boeuf,et al.  Modelling of a nanosecond surface discharge actuator , 2009 .

[52]  Eric J. Jumper,et al.  Mechanisms and Responses of a Single Dielectric Barrier Plasma Actuator: Plasma Morphology , 2004 .

[53]  J. Boeuf,et al.  A Monte Carlo analysis of an electron swarm in a nonuniform field: the cathode region of a glow discharge in helium , 1982 .

[54]  M. Mitchner,et al.  Partially ionized gases , 1973 .

[55]  Hyungrok Do,et al.  On the role of oxygen in dielectric barrier discharge actuation of aerodynamic flows , 2007 .

[56]  G. Neretti,et al.  Hypersonic MHD Interaction on a Conical Test Body With a Hall Electrical Connection , 2008, IEEE Transactions on Plasma Science.

[57]  N. Aleksandrov,et al.  Numerical simulation of a surface barrier discharge in air , 2008 .