A regularization approach to functional Itô calculus and strong-viscosity solutions to path-dependent PDEs

First, we revisit functional Ito/path-dependent calculus started by B. Dupire, R. Cont and D.-A. Fournie, using the formulation of calculus via regularization. Relations with the corresponding Banach space valued calculus introduced by C. Di Girolami and the second named author are explored. The second part of the paper is devoted to the study of the Kolmogorov type equation associated with the so called window Brownian motion, called path-dependent heat equation, for which well-posedness at the level of classical solutions is established. Then, a notion of strong approximating solution, called strong-viscosity solution, is introduced which is supposed to be a substitution tool to the viscosity solution. For that kind of solution, we also prove existence and uniqueness. The notion of strong-viscosity solution motivates the last part of the paper which is devoted to explore this new concept of solution for general semilinear PDEs in the finite dimensional case. We prove an equivalence result between the classical viscosity solution and the new one. The definition of strong-viscosity solution for semilinear PDEs is inspired by the notion of "good" solution, and it is based again on an approximating procedure.

[1]  Elements of Stochastic Calculus via Regularization , 2006, math/0603224.

[2]  JB Clément,et al.  Weak Dirichlet processes with a stochastic control perspective , 2006, math/0604326.

[3]  N. Touzi,et al.  Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part II , 2012, 1210.0007.

[4]  Shige Peng,et al.  Note on Viscosity Solution of Path-Dependent PDE and G-Martingales , 2011, 1106.1144.

[5]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[6]  P. Meyer,et al.  Probabilités et potentiel , 1966 .

[7]  P. Vallois,et al.  Intégrales progressive, rétrograde et symétrique de processus non adaptés , 1991 .

[8]  Rama Cont,et al.  Change of variable formulas for non-anticipative functionals on path space ✩ , 2010, 1004.1380.

[9]  É. Pardoux,et al.  Probabilistic interpretation of a system of semi-linear parabolic partial differential equations , 1997 .

[10]  E. Fabes,et al.  Uniqueness in the dirichlet problem for some elliptic operators with discontinuous coefficients , 1993 .

[11]  Francesco Russo,et al.  Generalized covariation for Banach space valued processes, Itô formula and applications , 2010, 1012.2484.

[12]  S. Peng Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob–Meyers type , 1999 .

[13]  Nizar Touzi,et al.  Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part I , 2016 .

[14]  Rama Cont,et al.  A functional extension of the Ito formula , 2010 .

[15]  Francesco Russo,et al.  Forward, backward and symmetric stochastic integration , 1993 .

[16]  Francesco Russo,et al.  Generalized covariation and extended Fukushima decompositions for Banach valued processes. Application to windows of Dirichlet processes. , 2011, 1105.4419.

[17]  S. Varadhan,et al.  A probabilistic approach to , 1974 .

[18]  F. Russo,et al.  Clark–Ocone type formula for non-semimartingales with finite quadratic variation , 2010, 1005.3608.

[19]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[20]  Rama Cont,et al.  Functional Ito calculus and stochastic integral representation of martingales , 2010, 1002.2446.

[21]  Nizar Touzi,et al.  On viscosity solutions of path dependent PDEs , 2011, 1109.5971.

[22]  Francesco Russo,et al.  Verification theorems for stochastic optimal control problems via a time dependent Fukushima-Dirichlet decomposition , 2006, math/0604327.

[23]  Jin Ma,et al.  Pathwise Taylor Expansions for Random Fields on Multiple Dimensional Paths , 2013, 1310.0517.

[24]  M. Crandall ON THE EQUIVALENCE OF VARIOUS WEAK NOTIONS OF SOLUTIONSOF ELLIPTIC PDES WITH MEASURABLE INGREDIENTS , 1996 .

[25]  J. Doob Stochastic processes , 1953 .

[26]  Francesco Russo,et al.  The generalized covariation process and Ito formula , 1995 .

[27]  Andrzej Swiech,et al.  Good and viscosity solutions of fully nonlinear elliptic equations , 2001 .

[28]  Ivan Nourdin,et al.  Approximation at First and Second Order of $m$-order Integrals of the Fractional Brownian Motion and of Certain Semimartingales , 2003 .

[29]  Nizar Touzi,et al.  Optimal Stopping under Nonlinear Expectation , 2012, 1209.6601.

[30]  R. Cooke Real and Complex Analysis , 2011 .

[31]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[32]  R. Ryan Introduction to Tensor Products of Banach Spaces , 2002 .

[33]  S. Cerrai Second Order Pde's in Finite and Infinite Dimension: A Probabilistic Approach , 2001 .

[34]  P. Heywood Trigonometric Series , 1968, Nature.

[35]  Uniformly Elliptic PDEs with Bounded, Measurable Coefficients , 1995 .

[36]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[37]  Francesco Russo,et al.  Infinite dimensional stochastic calculus via regularization , 2010 .

[38]  Bruno Dupire,et al.  Functional Itô Calculus , 2009 .

[39]  F. Russo,et al.  The covariation for Banach space valued processes and applications , 2013, 1301.5715.

[40]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[41]  F. Flandoli,et al.  An infinite-dimensional approach to path-dependent Kolmogorov equations , 2013, 1312.6165.

[42]  Hans Föllmer,et al.  Calcul d'ito sans probabilites , 1981 .

[43]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .