Effect of cyclodextrins’ cavity on the kinetics of alkaline hydrolysis of tris(1,10-Phenanthroline)Fe(II) in presence of surfactant

[1]  J. Simal-Gándara,et al.  Latest developments in the application of cyclodextrin host-guest complexes in beverage technology processes , 2020 .

[2]  Ambikesh Mahapatra,et al.  Kinetic investigations on the alkaline hydrolysis of tris-(1,10-phenenthroline)Fe(II) with guar gum–surfactant interactions , 2018 .

[3]  Ambikesh Mahapatra,et al.  Micellar and Mixed-Micellar Effects on Alkaline Hydrolysis of tris(1,10–phenanthroline)iron(II): Kinetic Exploration , 2016 .

[4]  Ambikesh Mahapatra,et al.  Kinetic investigation on the oxidation of tris(1,10-phenanthroline)iron(II) by oxone: the effect of BSA-SDS interaction. , 2012, Journal of colloid and interface science.

[5]  Ambikesh Mahapatra,et al.  Kinetics of basic hydrolysis of tris(1,10-phenanthroline)iron(II) in macromolecular assemblies of CTAB , 2011 .

[6]  A. Valente,et al.  The effect of the head-group spacer length of 12-s-12 gemini surfactants in the host-guest association with β-cyclodextrin. , 2011, Journal of Colloid and Interface Science.

[7]  R. Gotti,et al.  Capillary electrophoretic study on the interaction between sodium dodecyl sulfate and neutral cyclodextrins , 2010 .

[8]  M. Singla,et al.  Micellar behavior of aqueous solutions of dodecyldimethylethylammonium bromide, dodecyltrimethylammonium chloride and tetradecyltrimethylammonium chloride in the presence of alpha-, beta-, HPbeta- and gamma-cyclodextrins. , 2008, Journal of colloid and interface science.

[9]  A. Guerrero‐Martínez,et al.  Unexpected binding mode of gemini surfactants and γ-cyclodextrin: DOSY as a tool for the study of complexation , 2006 .

[10]  A. Valente,et al.  Interactions between gemini surfactants, 12-s-12, and beta-cyclodextrin as investigated by NMR diffusometry and electric conductometry. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[11]  K. Khilar,et al.  Kinetics of basic hydrolysis of tris (1,10-phenanthroline) iron(11) in Triton X 100/hexanol/water reverse micelles in cyclohexane , 2005 .

[12]  C. Bravo-Díaz,et al.  Inhibition of the beta-cyclodextrin catalyzed dediazoniation of 4-nitrobenzenediazonium tetrafluoroborate. blocking effect of sodium dodecyl sulfate. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[13]  A. Rafati,et al.  Study of inclusion complex formation between a homologous series of n-alkyltrimethylammonium bromides and β-cyclodextrin, using conductometric technique , 2005 .

[14]  A. Valente,et al.  Interactions between n-octyl and n-nonyl beta-D-glucosides and alpha- and beta-cyclodextrins as seen by self-diffusion NMR. , 2005, Journal of colloid and interface science.

[15]  Mark E. Davis,et al.  Cyclodextrin-based pharmaceutics: past, present and future , 2004, Nature Reviews Drug Discovery.

[16]  C. Bravo-Díaz,et al.  Effects of α-, β- and γ-cyclodextrins on the critical micelle concentration of sodium dodecyl sulfate micelles , 2004 .

[17]  S. Neya,et al.  1:1 and 1:2 Complexes between Long-Chain Surfactant and α-Cyclodextrin Studied by NMR , 2004 .

[18]  A. Rafati,et al.  Electrochemical and Thermodynamic Studies of Inclusion Complex Formation between Tetradecyltrimethylammonium Bromide (TTAB) and β-Cyclodextrin (β-CD) , 2004 .

[19]  V. C. Reinsborough,et al.  Inclusion complexation involving sugar-containing species: β-cyclodextrin and sugar surfactants , 2004 .

[20]  R. Guo,et al.  The effect of β-cyclodextrin on the properties of cetyltrimethylammonium bromide micelles , 2003 .

[21]  G. González‐Gaitano,et al.  Thermodynamic and Spectroscopic Study of a Molecular Rotaxane Containing a Bolaform Surfactant and β-Cyclodextrin , 2001 .

[22]  C. Lebrilla,et al.  Evidence for the Formation of Gas-Phase Inclusion Complexes with Cyclodextrins and Amino Acids , 2000 .

[23]  M. Bakshi Cationic mixed micelles in the presence of β-cyclodextrin : A host-guest study , 2000 .

[24]  Andres Milioto,et al.  Calorimetric Study of Sodium n-Alkanoate−Modified Cyclodextrin−Water Ternary Systems , 2000 .

[25]  R. Verrall,et al.  A Volumetric Study of Cyclodextrin-α,ω-Alkyl Dicarboxylate Anion Complexes in Aqueous Solutions , 2000 .

[26]  E. Iglesias Differences in the activity of neutral and ionized β-cyclodextrin on the nitrosation of amines by phenylpropyl nitrites , 2000 .

[27]  A. D. Giacomo,et al.  Thermodynamic properties of sodium n-perfluoroalkanoates in water and in water + cyclodextrins mixtures , 1999 .

[28]  E. Iglesias CYCLODEXTRINS AS ENZYME MODELS IN NITROSATION AND IN ACID: BASE-CATALYZED REACTIONS OF ALKYL NITRITES , 1998 .

[29]  J. Szejtli Introduction and General Overview of Cyclodextrin Chemistry. , 1998, Chemical reviews.

[30]  R. Verrall,et al.  VOLUMETRIC STUDY OF MODIFIED BETA -CYCLODEXTRIN/HYDROCARBON AND /FLUOROCARBON SURFACTANT INCLUSION COMPLEXES IN AQUEOUS SOLUTIONS , 1998 .

[31]  A. Fernández,et al.  Cyclodextrin catalysis in the basic hydrolysis of alkyl nitrites , 1998 .

[32]  R. Verrall,et al.  A Volumetric Study of β-Cyclodextrin/Hydrocarbon and β-Cyclodextrin/Fluorocarbon Surfactant Inclusion Complexes in Aqueous Solutions , 1997 .

[33]  K. A. Connors,et al.  The Stability of Cyclodextrin Complexes in Solution. , 1997, Chemical reviews.

[34]  E. Junquera,et al.  Micellar behavior of the aqueous solutions of dodecylethyldimethylammonium bromide. A characterization study in the presence and absence of hydroxypropyl-β-cyclodextrin , 1997 .

[35]  A. Granados,et al.  Multiple Pathways in Cyclodextrin-Catalyzed Hydrolysis of Perfluoroalkylamides , 1995 .

[36]  J. Holzwarth,et al.  Reliability of the Experimental Methods To Determine Equilibrium Constants for Surfactant/Cyclodextrin Inclusion Complexes , 1995 .

[37]  Yunbao Jiang,et al.  Direct Evidence for β-Cyclodextrin-Induced Aggregation of Ionic Surfactant below Critical Micelle Concentration , 1994 .

[38]  J.González Benito,et al.  Encapsulation Processes of Dodecyltrimethylammonium Bromide into the β-Cyclodextrin or 2,6-di-o-Methyl-β-Cyclodextrin Cavities from Speed of Sound Data , 1994 .

[39]  William C. Purdy,et al.  Cyclodextrins and Their Applications in Analytical Chemistry , 1992 .

[40]  P. Letellier,et al.  tude potentiomtrique de la stabilit de complexes tensioactif-cyclodextrine , 1991 .

[41]  M. Bozzi,et al.  Spectator catalysis by alcohols in the cleavage of an aryl ester by .beta.-cyclodextrin. Ternary complexes and structural dependence , 1990 .

[42]  R. Palepu,et al.  Solution inclusion complexes of cyclodextrins with sodium perfluorooctanoate , 1989 .

[43]  Joon Woo Park,et al.  Association of anionic surfactants with β-cyclodextrin. Fluorescence-probed studies on the 1:1 and 1:2 complexation , 1989 .

[44]  R. Palepu,et al.  Binding constants of .beta.-cyclodextrin/surfactant inclusion by conductivity measurements , 1989 .

[45]  R. Palepu,et al.  Surfactant–cyclodextrin interactions by conductance measurements , 1988 .

[46]  K. Laidler,et al.  Development of transition-state theory , 1983 .

[47]  E. Bjergbakke,et al.  Dissociation and dioxygen formation in hydroxide solutions of tris(2,2'-bipyridyl)iron(III) and tris(1,10-phenanthroline)iron(III): rates and stoichiometry , 1983 .

[48]  R. M. Noyes Chemical oscillations and instabilities. 39. A generalized mechanism for bromate-driven oscillators controlled by bromide , 1980 .

[49]  Wolfram Saenger,et al.  Cyclodextrin Inclusion Compounds in Research and Industry , 1980 .

[50]  F. Menger,et al.  Chemistry of reactions proceeding inside molecular aggregates , 1967 .

[51]  M. L. Bender,et al.  Acceleration of phenyl ester cleavage by cycloamyloses. A model for enzymic specificity , 1967 .

[52]  R. J. Williams,et al.  Iron dipyridyl complexes as models for iron-porphyrin proteins. , 1962, Biochemistry.