Membrane fusion mediated by coiled coils: a hypothesis.

[1]  J. Bentz,et al.  Minimal aggregate size and minimal fusion unit for the first fusion pore of influenza hemagglutinin-mediated membrane fusion. , 2000, Biophysical journal.

[2]  P. S. Kim,et al.  Inhibiting HIV-1 Entry Discovery of D-Peptide Inhibitors that Target the gp41 Coiled-Coil Pocket , 1999, Cell.

[3]  J. Rothman,et al.  The length of the flexible SNAREpin juxtamembrane region is a critical determinant of SNARE-dependent fusion. , 1999, Molecular cell.

[4]  J. Skehel,et al.  N- and C-terminal residues combine in the fusion-pH influenza hemagglutinin HA(2) subunit to form an N cap that terminates the triple-stranded coiled coil. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[5]  G. Melikyan,et al.  Tension of membranes expressing the hemagglutinin of influenza virus inhibits fusion. , 1999, Biophysical journal.

[6]  A. Mayer,et al.  Intracellular membrane fusion: SNAREs only? , 1999, Current opinion in cell biology.

[7]  F S Cohen,et al.  A specific point mutant at position 1 of the influenza hemagglutinin fusion peptide displays a hemifusion phenotype. , 1999, Molecular biology of the cell.

[8]  M Singh,et al.  LearnCoil-VMF: computational evidence for coiled-coil-like motifs in many viral membrane-fusion proteins , 1999, Journal of Molecular Biology.

[9]  J. Ruysschaert,et al.  Membrane fusion induced by a short fusogenic peptide is assessed by its insertion and orientation into target bilayers. , 1999, Biochemistry.

[10]  Q. Sattentau,et al.  Constitutive cell surface association between CD4 and CCR5. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[11]  F. Booy,et al.  Conformational Intermediates and Fusion Activity of Influenza Virus Hemagglutinin , 1999, Journal of Virology.

[12]  T L Hoffman,et al.  Stable exposure of the coreceptor-binding site in a CD4-independent HIV-1 envelope protein. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[13]  R. Brasseur,et al.  Are the fusion processes involved in birth, life and death of the cell depending on tilted insertion of peptides into membranes? , 1999, Journal of theoretical biology.

[14]  J. Skehel,et al.  Membrane fusion by surrogate receptor-bound influenza haemagglutinin. , 1999, Virology.

[15]  M. Winterhalter On the defect growth after short electric field pulses in planar lipid bilayers , 1999 .

[16]  R. Lamb,et al.  Structural basis for paramyxovirus-mediated membrane fusion. , 1999, Molecular cell.

[17]  R. Epand,et al.  The ectodomain of HA2 of influenza virus promotes rapid pH dependent membrane fusion. , 1999, Journal of molecular biology.

[18]  R. Blumenthal,et al.  The influenza haemagglutinin-induced fusion cascade: effects of target membrane permeability changes. , 1999, Molecular membrane biology.

[19]  M. Kozlov,et al.  Structural intermediates in influenza haemagglutinin-mediated fusion. , 1999, Molecular membrane biology.

[20]  J. Skehel,et al.  Coiled Coils in Both Intracellular Vesicle and Viral Membrane Fusion , 1998, Cell.

[21]  T. Weimbs,et al.  A model for structural similarity between different SNARE complexes based on sequence relationships. , 1998, Trends in cell biology.

[22]  L. Tamm,et al.  pH‐Induced conformational changes of membrane‐bound influenza hemagglutinin and its effect on target lipid bilayers , 1998, Protein science : a publication of the Protein Society.

[23]  Reinhard Jahn,et al.  Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution , 1998, Nature.

[24]  M. Kozlov,et al.  A mechanism of protein-mediated fusion: coupling between refolding of the influenza hemagglutinin and lipid rearrangements. , 1998, Biophysical journal.

[25]  A. Gronenborn,et al.  Three‐dimensional solution structure of the 44 kDa ectodomain of SIV gp41 , 1998, The EMBO journal.

[26]  R. Lamb,et al.  A core trimer of the paramyxovirus fusion protein: parallels to influenza virus hemagglutinin and HIV-1 gp41. , 1998, Virology.

[27]  M. Klein,et al.  Constant pressure and temperature molecular-dynamics simulation of the hydrated diphytanolphosphatidylcholine lipid bilayer , 1998 .

[28]  K. Sharp,et al.  The role of protonation and metal chelation preferences in defining the properties of mercury-binding coiled coils. , 1998, Journal of molecular biology.

[29]  S. Pelletier,et al.  Specific Single or Double Proline Substitutions in the “Spring-loaded” Coiled-Coil Region of the Influenza Hemagglutinin Impair or Abolish Membrane Fusion Activity , 1998, The Journal of cell biology.

[30]  M. Götte,et al.  A new beat for the SNARE drum. , 1998, Trends in cell biology.

[31]  W. Weissenhorn,et al.  The central structural feature of the membrane fusion protein subunit from the Ebola virus glycoprotein is a long triple-stranded coiled coil. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[32]  D. Z. Cleverley,et al.  The transmembrane domain in viral fusion: essential role for a conserved glycine residue in vesicular stomatitis virus G protein. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[33]  P. Bronk,et al.  The Pathway of Membrane Fusion Catalyzed by Influenza Hemagglutinin: Restriction of Lipids, Hemifusion, and Lipidic Fusion Pore Formation , 1998, The Journal of cell biology.

[34]  Benedikt Westermann,et al.  SNAREpins: Minimal Machinery for Membrane Fusion , 1998, Cell.

[35]  S. Durell,et al.  Dilation of the Human Immunodeficiency Virus–1 Envelope Glycoprotein Fusion Pore Revealed by the Inhibitory Action of a Synthetic Peptide from gp41 , 1998, The Journal of cell biology.

[36]  J. Lear,et al.  Morphological changes and fusogenic activity of influenza virus hemagglutinin. , 1998, Biophysical journal.

[37]  P S Kim,et al.  Influenza hemagglutinin is spring-loaded by a metastable native conformation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[38]  A T Brünger,et al.  Structural Changes Are Associated with Soluble N-Ethylmaleimide-sensitive Fusion Protein Attachment Protein Receptor Complex Formation* , 1997, The Journal of Biological Chemistry.

[39]  L. Tamm,et al.  Structural studies on membrane‐embedded influenza hemagglutinin and its fragments , 1997, Protein science : a publication of the Protein Society.

[40]  R. Doms,et al.  Unwelcomed guests with master keys: how HIV uses chemokine receptors for cellular entry. , 1997, Virology.

[41]  S. Durell,et al.  What studies of fusion peptides tell us about viral envelope glycoprotein-mediated membrane fusion (review). , 1997, Molecular membrane biology.

[42]  K. Kawasaki,et al.  Structural Features of Membrane Fusion between Influenza Virus and Liposome as Revealed by Quick-Freezing Electron Microscopy , 1997, The Journal of cell biology.

[43]  B. Lentz,et al.  Evolution of lipidic structures during model membrane fusion and the relation of this process to cell membrane fusion. , 1997, Biochemistry.

[44]  Deborah Fass,et al.  Core Structure of gp41 from the HIV Envelope Glycoprotein , 1997, Cell.

[45]  A. Herrmann,et al.  Transient Changes of the Conformation of Hemagglutinin of Influenza Virus at Low pH Detected by Time-resolved Circular Dichroism Spectroscopy* , 1997, The Journal of Biological Chemistry.

[46]  G. Melikyan,et al.  Inner but Not Outer Membrane Leaflets Control the Transition from Glycosylphosphatidylinositol-anchored Influenza Hemagglutinin-induced Hemifusion to Full Fusion , 1997, The Journal of cell biology.

[47]  P. Bronk,et al.  An Early Stage of Membrane Fusion Mediated by the Low pH Conformation of Influenza Hemagglutinin Depends upon Membrane Lipids , 1997, The Journal of cell biology.

[48]  S. Durell,et al.  Dilation of the influenza hemagglutinin fusion pore revealed by the kinetics of individual cell-cell fusion events , 1996, The Journal of cell biology.

[49]  Paul E. Kennedy,et al.  HIV-1 Entry Cofactor: Functional cDNA Cloning of a Seven-Transmembrane, G Protein-Coupled Receptor , 1996, Science.

[50]  P. S. Kim,et al.  Retrovirus envelope domain at 1.7 Å resolution , 1996, Nature Structural Biology.

[51]  S. Pelletier,et al.  Membrane fusion mediated by the influenza virus hemagglutinin requires the concerted action of at least three hemagglutinin trimers , 1996, The Journal of cell biology.

[52]  T. Creamer,et al.  Solvation energies of amino acid side chains and backbone in a family of host-guest pentapeptides. , 1996, Biochemistry.

[53]  T. Shangguan,et al.  Influenza-virus-liposome lipid mixing is leaky and largely insensitive to the material properties of the target membrane. , 1996, Biochemistry.

[54]  P. S. Kim,et al.  Retrovirus envelope domain at 1.7 angstrom resolution. , 1996, Nature structural biology.

[55]  T. Wolfsberg,et al.  Virus-cell and cell-cell fusion. , 1996, Annual review of cell and developmental biology.

[56]  W. Weissenhorn,et al.  A soluble domain of the membrane-anchoring chain of influenza virus hemagglutinin (HA2) folds in Escherichia coli into the low-pH-induced conformation. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[57]  T. Stegmann,et al.  Inhibition of Influenza-induced Membrane Fusion by Lysophosphatidylcholine (*) , 1995, The Journal of Biological Chemistry.

[58]  G. Melikyan,et al.  The fusion kinetics of influenza hemagglutinin expressing cells to planar bilayer membranes is affected by HA density and host cell surface , 1995, The Journal of general physiology.

[59]  S. Tatulian,et al.  Influenza hemagglutinin assumes a tilted conformation during membrane fusion as determined by attenuated total reflection FTIR spectroscopy. , 1995, The EMBO journal.

[60]  J. White,et al.  GPI-anchored influenza hemagglutinin induces hemifusion to both red blood cell and planar bilayer membranes , 1995, The Journal of cell biology.

[61]  R. Ruigrok,et al.  Low-pH induced conformational changes in viral fusion proteins: implications for the fusion mechanism. , 1995, The Journal of general virology.

[62]  J. Skehel,et al.  Electron microscopy of antibody complexes of influenza virus haemagglutinin in the fusion pH conformation. , 1995, The EMBO journal.

[63]  Stephen C. Blacklow,et al.  A trimeric structural domain of the HIV-1 transmembrane glycoprotein , 1995, Nature Structural Biology.

[64]  T. Oas,et al.  Propensity for a leucine zipper-like domain of human immunodeficiency virus type 1 gp41 to form oligomers correlates with a role in virus-induced fusion rather than assembly of the glycoprotein complex. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[65]  J. Zimmerberg,et al.  Restricted movement of lipid and aqueous dyes through pores formed by influenza hemagglutinin during cell fusion , 1994, The Journal of cell biology.

[66]  J. Skehel,et al.  Structure of influenza haemagglutinin at the pH of membrane fusion , 1994, Nature.

[67]  P. Borgeat Handbook of lipid research, vol. 7 , 1994 .

[68]  D. Alford,et al.  Fusion of influenza virus with sialic acid-bearing target membranes. , 1994, Biochemistry.

[69]  R. Blumenthal,et al.  Intermediates in influenza virus PR/8 haemagglutinin-induced membrane fusion. , 1994, The Journal of general virology.

[70]  Judith M. White,et al.  Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion , 1994, Cell.

[71]  T. Südhof,et al.  Synaptic vesicles and exocytosis. , 1994, Annual review of neuroscience.

[72]  D. Siegel,et al.  Energetics of intermediates in membrane fusion: comparison of stalk and inverted micellar intermediate mechanisms. , 1993, Biophysical journal.

[73]  Shibo Jiang,et al.  HIV-1 inhibition by a peptide , 1993, Nature.

[74]  P. S. Kim,et al.  A spring-loaded mechanism for the conformational change of influenza hemagglutinin , 1993, Cell.

[75]  W. Almers,et al.  Membrane flux through the pore formed by a fusogenic viral envelope protein during cell fusion , 1993, The Journal of cell biology.

[76]  Paul Tempst,et al.  SNAP receptors implicated in vesicle targeting and fusion , 1993, Nature.

[77]  J. Bentz Intermediates and kinetics of membrane fusion. , 1992, Biophysical journal.

[78]  J. Skehel,et al.  Introduction of intersubunit disulfide bonds in the membrane-distal region of the influenza hemagglutinin abolishes membrane fusion activity , 1992, Cell.

[79]  W. DeGrado,et al.  Membrane fusion activity of the influenza virus hemagglutinin: interaction of HA2 N-terminal peptides with phospholipid vesicles. , 1991, Biochemistry.

[80]  D. Alford,et al.  An architecture for the fusion site of Influenza hemagglutinin , 1990, FEBS letters.

[81]  A. Helenius,et al.  Intermediates in influenza induced membrane fusion. , 1990, The EMBO journal.

[82]  J. White,et al.  Fusion of influenza hemagglutinin-expressing fibroblasts with glycophorin-bearing liposomes: role of hemagglutinin surface density. , 1990, Biochemistry.

[83]  R. Doms,et al.  Conformational changes and fusion activity of influenza virus hemagglutinin of the H2 and H3 subtypes: effects of acid pretreatment , 1990, Journal of virology.

[84]  L. J. Lis,et al.  Membrane fusion and inverted phases. , 1989, Biochemistry.

[85]  J. Skehel,et al.  Studies on the structure of the influenza virus haemagglutinin at the pH of membrane fusion. , 1988, The Journal of general virology.

[86]  I. Wilson,et al.  Anti-peptide antibodies detect steps in a protein conformational change: low-pH activation of the influenza virus hemagglutinin , 1987, The Journal of cell biology.

[87]  F. Szoka,et al.  Destabilization of phosphatidylethanolamine-containing liposomes: hexagonal phase and asymmetric membranes. , 1987, Biochemistry.

[88]  M. Gething,et al.  Studies on the mechanism of membrane fusion: site-specific mutagenesis of the hemagglutinin of influenza virus , 1986, The Journal of cell biology.

[89]  I. Wilson,et al.  Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[90]  I. Wilson,et al.  Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution , 1981, Nature.

[91]  D. Hanahan Handbook of lipid research , 1978 .