Large-scale comparative visualisation of sets of multidimensional data

We present encube $-$ a qualitative, quantitative and comparative visualisation and analysis system, with application to high-resolution, immersive three-dimensional environments and desktop displays. encube extends previous comparative visualisation systems by considering: 1) the integration of comparative visualisation and analysis into a unified system; 2) the documentation of the discovery process; and 3) an approach that enables scientists to continue the research process once back at their desktop. Our solution enables tablets, smartphones or laptops to be used as interaction units for manipulating, organising, and querying data. We highlight the modularity of encube, allowing additional functionalities to be included as required. Additionally, our approach supports a high level of collaboration within the physical environment. We show how our implementation of encube operates in a large-scale, hybrid visualisation and supercomputing environment using the CAVE2 at Monash University, and on a local desktop, making it a versatile solution. We discuss how our approach can help accelerate the discovery rate in a variety of research scenarios.

[1]  G. Egan,et al.  Functional changes during working memory in Huntington’s disease: 30-month longitudinal data from the IMAGE-HD study , 2013, Brain Structure and Function.

[2]  Arthur Nishimoto,et al.  CAVE2: a hybrid reality environment for immersive simulation and information analysis , 2013, Electronic Imaging.

[3]  J. Conway,et al.  LOFAR and APERTIF Surveys of the Radio Sky: Probing Shocks and Magnetic Fields in Galaxy Clusters , 2011, 1107.1606.

[4]  Hiroyuki Yoshida,et al.  Fundamentals of Three-dimensional Digital Image Processing , 2009 .

[5]  Alexander S. Szalay,et al.  Delivering SKA Science , 2015, ArXiv.

[6]  R. Sancisi,et al.  The Westerbork HI survey of irregular and spiral galaxies, WHISP , 2001 .

[7]  Govinda R. Poudel,et al.  The multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) high performance computing infrastructure: applications in neuroscience and neuroinformatics research , 2014, Front. Neuroinform..

[8]  Greg Welch,et al.  The office of the future: a unified approach to image-based modeling and spatially immersive displays , 1998, SIGGRAPH.

[9]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[10]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[11]  Richard May,et al.  A Survey of Large High-Resolution Display Technologies, Techniques, and Applications , 2006, IEEE Virtual Reality Conference (VR 2006).

[12]  R. Davies,et al.  The SAURON project – I. The panoramic integral-field spectrograph , 2001, astro-ph/0103451.

[13]  Yvonne Rogers,et al.  Dynamo: a public interactive surface supporting the cooperative sharing and exchange of media , 2003, UIST '03.

[14]  Hans Hagen,et al.  Collaborative visualization: Definition, challenges, and research agenda , 2011, Inf. Vis..

[15]  Matthew Wright,et al.  The Web Browser As Synthesizer And Interface , 2013, NIME.

[16]  E. LeDrew,et al.  Remote sensing of aquatic coastal ecosystem processes , 2006 .

[17]  Luc Renambot,et al.  Scalable Graphics Architecture for High-Resolution Displays , 2005 .

[18]  Kum Won Cho,et al.  Future Application and Middleware Technology on e-Science , 2009 .

[19]  Jeffrey Heer,et al.  Design Considerations for Collaborative Visual Analytics , 2008, Inf. Vis..

[20]  Razvan Pascanu,et al.  Theano: A CPU and GPU Math Compiler in Python , 2010, SciPy.

[21]  Michel Beaudouin-Lafon,et al.  Lessons learned from the WILD room, a multisurface interactive environment , 2011, IHM.

[22]  Dipl.-Ing,et al.  Real-time Rendering , 2022 .

[23]  Koji Koyamada,et al.  HyperInfo: Interactive Large Display for Informal Visual Communication , 2014, 2014 17th International Conference on Network-Based Information Systems.

[24]  M. Govender,et al.  A review of hyperspectral remote sensing and its application in vegetation and water resource studies , 2009 .

[25]  Arthur Nishimoto,et al.  Omegalib: A multi-view application framework for hybrid reality display environments , 2014, 2014 IEEE Virtual Reality (VR).

[26]  Richard Szeliski,et al.  Computer Vision - Algorithms and Applications , 2011, Texts in Computer Science.

[27]  Daniele Donghi Porthole: A Decoupled HTML5 Interface Generator For Virtual Environments , 2013 .

[28]  Lambertus Hesselink,et al.  Research issues in vector and tensor field visualization , 1994, IEEE Computer Graphics and Applications.

[29]  J.B.T.M. Roerdink,et al.  The role of 3-D interactive visualization in blind surveys of H i in galaxies , 2015, Astron. Comput..

[30]  Stephen Travis Pope,et al.  The AlloSphere: Immersive Multimedia for Scientific Discovery and Artistic Exploration , 2009, IEEE MultiMedia.

[31]  J. Cummings,et al.  Huntington's disease. , 1997, The Psychiatric clinics of North America.

[32]  D. A. Duce,et al.  Visualization in Scientific Computing , 1994, Focus on Computer Graphics.

[33]  M. A. Gray,et al.  Automated differentiation of pre-diagnosis Huntington's disease from healthy control individuals based on quadratic discriminant analysis of the basal ganglia: The IMAGE-HD study , 2013, Neurobiology of Disease.

[34]  Kasper Hornbæk,et al.  Side-By-Side Display and Control of Multiple Scenarios: Subjunctive Interfaces for Exploring Multi-Attribute Data , 2003 .

[35]  B. Gibson,et al.  The HI Parkes All Sky Survey: southern observations, calibration and robust imaging , 2001 .

[36]  Satrajit S. Ghosh,et al.  Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing Framework in Python , 2011, Front. Neuroinform..

[37]  Alan C. Evans,et al.  The NIH MRI study of normal brain development , 2006, NeuroImage.

[38]  Hans-Georg Pagendarm,et al.  Comparative Visualization - Approaches and Examples , 1994 .

[39]  The Westerbork HI survey of spiral and irregular galaxies III. HI observations of early-type disk galaxies , 2005, astro-ph/0508319.

[40]  Michael Eickenberg,et al.  Machine learning for neuroimaging with scikit-learn , 2014, Front. Neuroinform..

[41]  Alexander G. Gray,et al.  Introduction to astroML: Machine learning for astrophysics , 2012, 2012 Conference on Intelligent Data Understanding.

[42]  Alexander Refsum Jensenius,et al.  Proceedings of the International Conference on New Interfaces for Musical Expression , 2011 .

[43]  Olivier Chapuis,et al.  Multisurface Interaction in the WILD Room , 2012, Computer.

[44]  R. S. Booth,et al.  MeerKAT Key Project Science, Specifications, and Proposals , 2009, 0910.2935.

[45]  Lance Putnam,et al.  Dynamic Interactivity Inside the AlloSphere , 2010, NIME.

[46]  R. Sancisi,et al.  Astronomy & Astrophysics manuscript no. (will be inserted by hand later) The Westerbork HI Survey of Spiral and Irregular Galaxies I. HI Imaging of Late-type Dwarf Galaxies , 2002 .

[47]  John C. Hart,et al.  The CAVE: audio visual experience automatic virtual environment , 1992, CACM.

[48]  James R. Eagan,et al.  Shared substance: developing flexible multi-surface applications , 2011, CHI.

[49]  Deborah F. Swayne,et al.  Statistical inference for exploratory data analysis and model diagnostics , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[50]  Karen A. Frenkel The art and science of visualizing data , 1988, CACM.

[51]  Christopher J. Fluke,et al.  An Advanced, Three-Dimensional Plotting Library for Astronomy , 2006, Publications of the Astronomical Society of Australia.

[52]  Kelly P. Gaither,et al.  DisplayCluster: An Interactive Visualization Environment for Tiled Displays , 2012, 2012 IEEE International Conference on Cluster Computing.

[53]  Olivier Chapuis,et al.  Mid-air pan-and-zoom on wall-sized displays , 2011, CHI.

[54]  S. Pizer,et al.  3D Imaging in Medicine , 1990, NATO ASI Series.

[55]  Govinda R. Poudel,et al.  Multi-Modal Neuroimaging in Premanifest and Early Huntington’s Disease: 18 Month Longitudinal Data from the IMAGE-HD Study , 2013, PloS one.

[56]  Tony Farrell,et al.  SAMI: a new multi-object IFS for the Anglo-Australian Telescope , 2012, Other Conferences.

[57]  T. A. Oosterloo,et al.  HI Surveys with APERTIF , 2009 .

[58]  John Anthony Roberts Multiple view and multiform visualization , 2000, Electronic Imaging.

[59]  Chris North,et al.  Four considerations for supporting visual analysis in display ecologies , 2015, 2015 IEEE Conference on Visual Analytics Science and Technology (VAST).

[60]  Heidrun Schumann,et al.  VioNeS - Visual Support for the Analysis of the Next Sub-volume Method , 2009, 2009 13th International Conference Information Visualisation.

[61]  John C. Tang,et al.  Liveboard: a large interactive display supporting group meetings, presentations, and remote collaboration , 1992, CHI.

[62]  O. Mutanga,et al.  Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review , 2010, Wetlands Ecology and Management.

[63]  Steen Moeller,et al.  The Human Connectome Project: A data acquisition perspective , 2012, NeuroImage.

[64]  Terry M. Peters,et al.  3D statistical neuroanatomical models from 305 MRI volumes , 1993, 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference.

[65]  Zhongping Lee,et al.  Use of hyperspectral remote sensing reflectance for detection and assessment of the harmful alga, Karenia brevis. , 2006, Applied optics.

[66]  A. Schaaff,et al.  Mobile applications and Virtual Observatory , 2015 .

[67]  E. Brinks,et al.  THINGS: THE H i NEARBY GALAXY SURVEY , 2008, 0810.2125.

[68]  Kohei Ichikawa,et al.  A Multi-Application Controller for SAGE-enabled Tiled Display Wall in Wide-area Distributed Computing Environments , 2011, J. Inf. Process. Syst..

[69]  Erik Tollerud,et al.  Software Use in Astronomy: an Informal Survey , 2015, ArXiv.

[70]  Bruce H. McCormick,et al.  Visualization: expanding scientific and engineering research opportunities , 1989, Computer.

[71]  Aitor Moreno,et al.  Interactive visualization of volumetric data with WebGL in real-time , 2011, Web3D '11.

[72]  Thomas Marrinan,et al.  SAGE2: A new approach for data intensive collaboration using Scalable Resolution Shared Displays , 2014, 10th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing.

[73]  Christian Müller-Tomfelde,et al.  Supporting interaction and collaboration on large displays using tablet devices , 2012, AVI.

[74]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[75]  J. Popp,et al.  Sample size planning for classification models. , 2012, Analytica chimica acta.

[76]  Stephanie Thalberg,et al.  Interferometry And Synthesis In Radio Astronomy , 2016 .

[77]  Frits H. Post,et al.  Visual Representation of Vector Fields Recent Developments and Research Directions , 1993 .

[78]  Falko Kuester,et al.  CGLX: A Scalable, High-Performance Visualization Framework for Networked Display Environments , 2011, IEEE Transactions on Visualization and Computer Graphics.

[79]  Susumu Date,et al.  ViewDock TDW: high-throughput visualization of virtual screening results , 2010, Bioinform..

[80]  B. H. McCormick,et al.  Visualization in scientific computing , 1995 .

[81]  Tobias Höllerer,et al.  Augmented textual data viewing in 3D visualizations using tablets , 2012, 2012 IEEE Symposium on 3D User Interfaces (3DUI).

[82]  Tobias Höllerer,et al.  The allosphere: a large-scale immersive surround-view instrument , 2007, EDT '07.

[83]  Frederick C. Harris,et al.  Scrybe: A Tablet Interface for Virtual Environments , 2010, CAINE.

[84]  Nicolas Pinto,et al.  PyCUDA and PyOpenCL: A scripting-based approach to GPU run-time code generation , 2009, Parallel Comput..

[85]  Joseph J. LaViola,et al.  Case Studies in Building Custom Input Devices for Virtual Environment Interaction , 2004 .