Modeling of Complex-Valued Wiener Systems Using B-Spline Neural Network

In this brief, a new complex-valued B-spline neural network is introduced in order to model the complex-valued Wiener system using observational input/output data. The complex-valued nonlinear static function in the Wiener system is represented using the tensor product from two univariate B-spline neural networks, using the real and imaginary parts of the system input. Following the use of a simple least squares parameter initialization scheme, the Gauss-Newton algorithm is applied for the parameter estimation, which incorporates the De Boor algorithm, including both the B-spline curve and the first-order derivatives recursion. Numerical examples, including a nonlinear high-power amplifier model in communication systems, are used to demonstrate the efficacy of the proposed approaches.

[1]  Martin Brown,et al.  Neurofuzzy adaptive modelling and control , 1994 .

[2]  Zygmunt Hasiewicz,et al.  On Nonparametric Identification of Wiener Systems , 2007, IEEE Transactions on Signal Processing.

[3]  C. J. Clark,et al.  Time-domain envelope measurement technique with application to wideband power amplifier modeling , 1998 .

[4]  Lajos Hanzo,et al.  Fully complex-valued radial basis function networks: Orthogonal least squares regression and classification , 2008, Neurocomputing.

[5]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[6]  Narasimhan Sundararajan,et al.  Fully complex extreme learning machine , 2005, Neurocomputing.

[7]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[8]  Er-Wei Bai An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998, Autom..

[9]  Lennart Ljung,et al.  Maximum likelihood identification of Wiener models , 2008, Autom..

[10]  Paolo Campolucci,et al.  Complex-valued neural networks with adaptive spline activation function for digital-radio-links nonlinear equalization , 1999, IEEE Trans. Signal Process..

[11]  Yves Rolain,et al.  Fast approximate identification of nonlinear systems , 2003, Autom..

[12]  Masaki Kobayashi,et al.  Exceptional Reducibility of Complex-Valued Neural Networks , 2010, IEEE Transactions on Neural Networks.

[13]  Dayong Zhou,et al.  Novel Adaptive Nonlinear Predistorters Based on the Direct Learning Algorithm , 2007, IEEE Transactions on Signal Processing.

[14]  Xia Hong,et al.  Adaptive Modelling, Estimation and Fusion from Data: A Neurofuzzy Approach , 2002, Advanced information processing.

[15]  Bernard Mulgrew,et al.  Complex-valued radial basic function network, Part I: Network architecture and learning algorithms , 1994, Signal Process..

[16]  Michele Scarpiniti,et al.  Flexible blind signal separation in the complex domain , 2009 .

[17]  Xia Hong,et al.  Adaptive Modelling, Estimation and Fusion from Data , 2002, Advanced Information Processing.

[18]  Tülay Adali,et al.  Approximation by Fully Complex Multilayer Perceptrons , 2003, Neural Computation.

[19]  Lei Guo,et al.  Adaptive Statistic Tracking Control Based on Two-Step Neural Networks With Time Delays , 2009, IEEE Transactions on Neural Networks.

[20]  W. R. Cluett,et al.  A new approach to the identification of pH processes based on the Wiener model , 1995 .

[21]  Akira Hirose,et al.  Complex-Valued Neural Networks , 2006, Studies in Computational Intelligence.

[22]  M. J. Korenberg,et al.  The identification of nonlinear biological systems: Wiener and Hammerstein cascade models , 1986, Biological Cybernetics.

[23]  Boris Igelnik,et al.  Kolmogorovs Spline Complex Network and Adaptive Dynamic Modeling of Data , 2009 .

[24]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[25]  Igor Skrjanc,et al.  Interval fuzzy modeling applied to Wiener models with uncertainties , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[26]  Yucai Zhu,et al.  Estimation of an N-L-N Hammerstein-Wiener model , 2002, Autom..

[27]  E. Baeyens,et al.  Wiener model identification and predictive control of a pH neutralisation process , 2004 .

[28]  Nirmal K. Bose,et al.  Landmine detection and classification with complex-valued hybrid neural network using scattering parameters dataset , 2005, IEEE Transactions on Neural Networks.

[29]  Dennis R. Morgan,et al.  A robust digital baseband predistorter constructed using memory polynomials , 2004, IEEE Transactions on Communications.

[30]  W. R. Cluett,et al.  Identification of Wiener-type nonlinear systems in a noisy environment , 1997 .

[31]  T. Kavli ASMO—Dan algorithm for adaptive spline modelling of observation data , 1993 .

[32]  Yucai Zhu,et al.  Distillation column identification for control using Wiener model , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).