Query Answering in Normal Logic Programs Under Uncertainty

We present a simple, yet general top-down query answering procedure for normal logic programs over lattices and bilattices, where functions may appear in the rule bodies. Its interest relies on the fact that many approaches to paraconsistency and uncertainty in logic programs with or without non-monotonic negation are based on bilattices or lattices, respectively.

[1]  Dov M. Gabbay,et al.  Handbook of defeasible reasoning and uncertainty management systems: volume 2: reasoning with actual and potential contradictions , 1998 .

[2]  K. A. Ross,et al.  Tabled Evaluation with Delaying for General Logic Programs , 1996 .

[3]  A. Tarski A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .

[4]  Luís Moniz Pereira,et al.  Antitonic Logic Programs , 2001, LPNMR.

[5]  Zbigniew W. Ras,et al.  Methodologies for Intelligent Systems , 1991, Lecture Notes in Computer Science.

[6]  Manuel Ojeda-Aciego,et al.  Sorted Multi-adjoint Logic Programs: Termination Results and Applications , 2004, JELIA.

[7]  Kenneth A. Ross,et al.  The well-founded semantics for general logic programs , 1991, JACM.

[8]  Rafee Ebrahim,et al.  Fuzzy logic programming , 2001, Fuzzy Sets Syst..

[9]  V. S. Subrahmanian,et al.  Theory of Generalized Annotated Logic Programming and its Applications , 1992, J. Log. Program..

[10]  Nuel D. Belnap,et al.  A Useful Four-Valued Logic , 1977 .

[11]  J. M. Dunn,et al.  Modern Uses of Multiple-Valued Logic , 1977 .

[12]  Umberto Straccia,et al.  The Well-Founded Semantics in Normal Logic Programs with Uncertainty , 2002, FLOPS.

[13]  Manuel Ojeda-Aciego,et al.  A Tabulation Proof Procedure for Residuated Logic Programming , 2004, ECAI.

[14]  Ann Q. Gates,et al.  TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING , 2005 .

[15]  Matthew L. Ginsberg,et al.  Multivalued logics: a uniform approach to reasoning in artificial intelligence , 1988, Comput. Intell..

[16]  Christian Glaßer,et al.  Generation Problems , 2004, MFCS.

[17]  Melvin Fitting,et al.  Fixpoint Semantics for Logic Programming a Survey , 2001, Theor. Comput. Sci..

[18]  Thomas Lukasiewicz,et al.  Probabilistic Logic Programming , 1998, ECAI.

[19]  Frank Wolter,et al.  Semi-qualitative Reasoning about Distances: A Preliminary Report , 2000, JELIA.

[20]  Roberto Grossi,et al.  Mathematical Foundations Of Computer Science 2003 , 2003 .

[21]  Didier Dubois,et al.  Towards Possibilistic Logic Programming , 1991, ICLP.

[22]  Jan Kratochvíl,et al.  Mathematical Foundations of Computer Science 2004 , 2004, Lecture Notes in Computer Science.

[23]  V. S. Subrahmanian,et al.  Stable Model Semantics for Probabilistic Deductive Databases , 1990, ISMIS.

[24]  Laks V. S. Lakshmanan,et al.  A Parametric Approach to Deductive Databases with Uncertainty , 2001, IEEE Trans. Knowl. Data Eng..

[25]  David Scott Warren,et al.  Tabled evaluation with delaying for general logic programs , 1996, JACM.

[26]  Thomas Lukasiewicz,et al.  Fixpoint Characterizations for Many-Valued Disjunctive Logic Programs with Probabilistic Semantics , 2001, LPNMR.

[27]  Krzysztof R. Apt,et al.  Logic Programming , 1990, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[28]  Umberto Straccia,et al.  The Approximate Well-Founded Semantics for Logic Programs with Uncertainty , 2003, MFCS.

[29]  C. Damásio,et al.  A survey of paraconsistent semantics for logic programs , 1998 .