A semi-discrete tailored finite point method for a class of anisotropic diffusion problems
暂无分享,去创建一个
[1] Zhongyi Huang,et al. A Tailored Finite Point Method for a Singular Perturbation Problem on an Unbounded Domain , 2008, J. Sci. Comput..
[2] JayanthaPasdunkoraleA.. A SECOND ORDER CONTROL-VOLUME FINITE-ELEMENT LEAST-SQUARES STRATEGY FOR SIMULATING DIFFUSION IN STRONGLY ANISOTROPIC MEDIA , 2005 .
[3] Joachim Weickert,et al. Anisotropic diffusion in image processing , 1996 .
[4] R. Bruce Kellogg,et al. Characteristic Tailored Finite Point Method for Convection-Dominated Convection-Diffusion-Reaction Problems , 2011, J. Sci. Comput..
[5] Wenjun Ying,et al. A kernel-free boundary integral method for elliptic boundary value problems , 2007, J. Comput. Phys..
[6] M. Shashkov,et al. Mimetic Finite Difference Methods for Diffusion Equations , 2002 .
[7] Ian Turner,et al. A SECOND ORDER CONTROL-VOLUME FINITE-ELEMENT LEAST-SQUARES STRATEGY FOR SIMULATING DIFFUSION IN STRONGLY ANISOTROPIC MEDIA 1) , 2005 .
[8] S. Valarmathi,et al. Solving a partially singularly perturbed initial value problem on Shishkin meshes , 2010, Appl. Math. Comput..
[9] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[10] Zhongyi,et al. A TAILORED FINITE POINT METHOD FOR THE HELMHOLTZ EQUATION WITH HIGH WAVE NUMBERS IN HETEROGENEOUS MEDIUM , 2008 .
[11] R. Bruce Kellogg,et al. A Tailored Finite Point Method for Convection-Diffusion-Reaction Problems , 2010, J. Sci. Comput..
[12] Fabrice Deluzet,et al. An Asymptotic Preserving Scheme for Strongly Anisotropic Elliptic Problems , 2009, Multiscale Model. Simul..
[13] Kevin Barraclough,et al. I and i , 2001, BMJ : British Medical Journal.
[14] Zhongyi Huang,et al. Tailored finite point method for the interface problem , 2009, Networks Heterog. Media.
[15] R. B. Kellogg,et al. Differentiability properties of solutions of the equation -ε 2 δ u + ru = f ( x,y ) in a square , 1990 .
[16] J. Mullen,et al. Effect of Bardeen-Herring Correlation on Vacancy Diffusion in Anisotropic Crystals , 1961 .
[17] Zhongyi Huang,et al. Tailored finite point method based on exponential bases for convection-diffusion-reaction equation , 2012, Math. Comput..
[18] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[19] Jitendra Malik,et al. Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..
[20] Greg Turk,et al. Generating textures on arbitrary surfaces using reaction-diffusion , 1991, SIGGRAPH.
[21] Zhongyi Huang,et al. Tailored Finite Point Method for a Singular Perturbation Problem with Variable Coefficients in Two Dimensions , 2009, J. Sci. Comput..
[22] Houde Han,et al. Tailored finite point method for steady-state reaction-diffusion equations , 2010 .