Linearisation of tautological control systems
暂无分享,去创建一个
[1] J. Craggs. Applied Mathematical Sciences , 1973 .
[2] K. Nomizu,et al. Foundations of Differential Geometry, Volume I. , 1965 .
[3] Andrew D. Lewis,et al. Locally convex topologies and control theory , 2016, Mathematics of Control, Signals, and Systems.
[4] Andrew D. Lewis,et al. Geometric Jacobian linearization and LQR theory , 2011 .
[5] Eduardo D. Sontag,et al. Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .
[6] R. Gamkrelidze,et al. THE EXPONENTIAL REPRESENTATION OF FLOWS AND THE CHRONOLOGICAL CALCULUS , 1979 .
[7] H. Freud. Mathematical Control Theory , 2016 .
[8] Local controllability of affine distributions , 2010 .
[9] T. J. Willmore,et al. TANGENT AND COTANGENT BUNDLES , 1975 .
[10] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[11] Friedemann Schuricht. Ordinary differential equations with measurable right-hand side and parameters in metric spaces , 2006 .
[12] A. Deitmar,et al. Strong vector valued integrals , 2011, 1102.1246.
[13] R. Brockett. Finite Dimensional Linear Systems , 2015 .
[14] A. Agrachev,et al. Control Theory from the Geometric Viewpoint , 2004 .
[15] R. Godement,et al. Topologie algébrique et théorie des faisceaux , 1960 .
[16] K. Nomizu,et al. Foundations of Differential Geometry , 1963 .
[17] Arjan van der Schaft,et al. Non-linear dynamical control systems , 1990 .
[18] Theodore Voronov,et al. General theory of Lie groupoids and Lie algebroids (London Mathematical Society Lecture Note Series 213) , 2010 .
[19] K. Mackenzie,et al. General theory of lie groupoids and lie algebroids , 2005 .
[20] D. Saunders. The Geometry of Jet Bundles , 1989 .
[21] R. Abraham,et al. Manifolds, Tensor Analysis, and Applications , 1983 .
[22] Hyunjoong Kim,et al. Functional Analysis I , 2017 .
[23] Andrew D. Lewis,et al. Tautological control systems , 2014, 53rd IEEE Conference on Decision and Control.
[24] Nicolas Bourbaki,et al. Elements of mathematics , 2004 .
[25] H. H. Schaefer,et al. Topological Vector Spaces , 1967 .
[26] Hans Jarchow,et al. Locally convex spaces , 1981 .
[27] Andrew D. Lewis,et al. Time-Varying Vector Fields and Their Flows , 2014 .
[28] H. Fédérer. Geometric Measure Theory , 1969 .
[29] A. D. Lewis,et al. Geometric interpretations of the symmetric product in affine differential geometry , 2011, 1104.1208.
[30] P. Michor,et al. Natural operations in differential geometry , 1993 .
[31] W. M. Wonham,et al. Linear Multivariable Control , 1979 .
[32] Shigeo Sasaki,et al. ON THE DIFFERENTIAL GEOMETRY OF TANGENT BUNDLES OF RIEMANNIAN MANIFOLDS II , 1958 .
[33] Richard Courant,et al. Wiley Classics Library , 2011 .
[34] Andrew D. Lewis,et al. Fundamental problems in geometric control theory , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).
[35] C. Dodson,et al. Tensor Geometry: The Geometric Viewpoint and its Uses , 1977 .
[36] Masaki Kashiwara,et al. Sheaves on Manifolds , 1990 .
[37] W. Wonham. Linear Multivariable Control: A Geometric Approach , 1974 .
[38] Eduardo D. Sontag,et al. Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .
[39] S. Sastry. Nonlinear Systems: Analysis, Stability, and Control , 1999 .
[40] Shôshichi Kobayashi,et al. Prolongations of tensor fields and connections to tangent bundles III , 1967 .
[41] A. Isidori. Nonlinear Control Systems , 1985 .