Linearisation of tautological control systems

The framework of tautological control systems is one where ``control'' in the usual sense has been eliminated, with the intention of overcoming the issue of feedback-invariance. Here, the linearisation of tautological control systems is described. This linearisation retains the feedback-invariant character of the tautological control systems framework and so permits, for example, a well-defined notion of linearisation of a system about an equilibrium point, something which has surprisingly been missing up to now. The linearisations described are of systems, first, and then about reference trajectories and reference flows.

[1]  J. Craggs Applied Mathematical Sciences , 1973 .

[2]  K. Nomizu,et al.  Foundations of Differential Geometry, Volume I. , 1965 .

[3]  Andrew D. Lewis,et al.  Locally convex topologies and control theory , 2016, Mathematics of Control, Signals, and Systems.

[4]  Andrew D. Lewis,et al.  Geometric Jacobian linearization and LQR theory , 2011 .

[5]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[6]  R. Gamkrelidze,et al.  THE EXPONENTIAL REPRESENTATION OF FLOWS AND THE CHRONOLOGICAL CALCULUS , 1979 .

[7]  H. Freud Mathematical Control Theory , 2016 .

[8]  Local controllability of affine distributions , 2010 .

[9]  T. J. Willmore,et al.  TANGENT AND COTANGENT BUNDLES , 1975 .

[10]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[11]  Friedemann Schuricht Ordinary differential equations with measurable right-hand side and parameters in metric spaces , 2006 .

[12]  A. Deitmar,et al.  Strong vector valued integrals , 2011, 1102.1246.

[13]  R. Brockett Finite Dimensional Linear Systems , 2015 .

[14]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[15]  R. Godement,et al.  Topologie algébrique et théorie des faisceaux , 1960 .

[16]  K. Nomizu,et al.  Foundations of Differential Geometry , 1963 .

[17]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[18]  Theodore Voronov,et al.  General theory of Lie groupoids and Lie algebroids (London Mathematical Society Lecture Note Series 213) , 2010 .

[19]  K. Mackenzie,et al.  General theory of lie groupoids and lie algebroids , 2005 .

[20]  D. Saunders The Geometry of Jet Bundles , 1989 .

[21]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[22]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[23]  Andrew D. Lewis,et al.  Tautological control systems , 2014, 53rd IEEE Conference on Decision and Control.

[24]  Nicolas Bourbaki,et al.  Elements of mathematics , 2004 .

[25]  H. H. Schaefer,et al.  Topological Vector Spaces , 1967 .

[26]  Hans Jarchow,et al.  Locally convex spaces , 1981 .

[27]  Andrew D. Lewis,et al.  Time-Varying Vector Fields and Their Flows , 2014 .

[28]  H. Fédérer Geometric Measure Theory , 1969 .

[29]  A. D. Lewis,et al.  Geometric interpretations of the symmetric product in affine differential geometry , 2011, 1104.1208.

[30]  P. Michor,et al.  Natural operations in differential geometry , 1993 .

[31]  W. M. Wonham,et al.  Linear Multivariable Control , 1979 .

[32]  Shigeo Sasaki,et al.  ON THE DIFFERENTIAL GEOMETRY OF TANGENT BUNDLES OF RIEMANNIAN MANIFOLDS II , 1958 .

[33]  Richard Courant,et al.  Wiley Classics Library , 2011 .

[34]  Andrew D. Lewis,et al.  Fundamental problems in geometric control theory , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[35]  C. Dodson,et al.  Tensor Geometry: The Geometric Viewpoint and its Uses , 1977 .

[36]  Masaki Kashiwara,et al.  Sheaves on Manifolds , 1990 .

[37]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .

[38]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .

[39]  S. Sastry Nonlinear Systems: Analysis, Stability, and Control , 1999 .

[40]  Shôshichi Kobayashi,et al.  Prolongations of tensor fields and connections to tangent bundles III , 1967 .

[41]  A. Isidori Nonlinear Control Systems , 1985 .