Analysis of μ-Contact Printed Protein Patterns by SPR Imaging with a LED Light Source

We demonstrate the characterization of μ-contact printed protein patterns and analysis of protein−protein interactions by two-dimensional (2-D) surface plasmon resonance imaging (SPRi). Advancements in SPRi image quality from employing a light emitting diode (LED) as the light source are described. We show that a LED offers an ideal point source that can eliminate interference artifacts and speckles found when using a laser source. The attainable thickness resolution in fixed-angle imaging is comparable to that of a monochromatic source, providing a solid foundation for quantitative analysis with the system. The SPR imaging technique reported here affords sub-nanometer thickness sensitivity and micrometer lateral resolution, allowing for convenient studies of biomolecular interactions and surface morphologies of ultrathin films. Spatially well-defined protein patterns of bacterial toxins were obtained by microcontact printing using a polydimethylsiloxane (PDMS) stamp on a functionalized self-assembled mon...