A Variable Length Tentacle Manipulator Control System

The control problem of a class of tentacle arm, with variable length, that can achieve any position and orientation in 3D space and can increase the length in order to get a better control in the constraint operator space is presented. First, the dynamic model of the system is inferred. In order to avoid the difficulties generated by the complexity of the nonlinear integral - differential model, the control problem is based on the artificial potential method. Then, the method is used for constrained motion in an environment with obstacles. Numerical simulations for spatial and planar tentacle models are presented in order to illustrate the efficiency of the method.

[1]  Mircea Ivanescu,et al.  Position dynamic control for a tentacle manipulator , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[2]  Gregory S. Chirikjian,et al.  Kinematically optimal hyper-redundant manipulator configurations , 1995, IEEE Trans. Robotics Autom..

[3]  N. V. Dounskaia Artificial potential method for control of constrained robot motion , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[4]  Gregory S. Chirikjian,et al.  An obstacle avoidance algorithm for hyper-redundant manipulators , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[5]  Shoichi Iikura,et al.  Development of flexible microactuator and its applications to robotic mechanisms , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[6]  Gregory S. Chirikjian,et al.  A general numerical method for hyper-redundant manipulator inverse kinematics , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[7]  P.K.C. Wang Control of Distributed Parameter Systems1 , 1964 .

[8]  Suguru Arimoto,et al.  A New Feedback Method for Dynamic Control of Manipulators , 1981 .

[9]  Hiromi Mochiyama,et al.  Direct kinematics of manipulators with hyper degrees of freedom and Frenet-Serret formula , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[10]  Mircea Ivanescu,et al.  Dynamic Control for a Tentacle Manipulator , 1984 .

[11]  Ian A. Gravagne,et al.  On the kinematics of remotely-actuated continuum robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[12]  Valery D. Yurkevich,et al.  Control of distributed parameter systems , 2004 .

[13]  J. Bruce C. Davies,et al.  Continuum robots - a state of the art , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[14]  Gregory S. Chirikjian,et al.  Kinematically optimal hyper-redundant manipulator configurations , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[15]  Hiromi Mochiyama,et al.  The shape Jacobian of a manipulator with hyper degrees of freedom , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).