Computing multiple peak solutions for Bose-Einstein condensates in optical lattices

Abstract We briefly review a class of nonlinear Schrodinger equations (NLS) which govern various physical phenomenon of Bose–Einstein condensation (BEC). We derive formulas for computing energy levels and wave functions of the Schrodinger equation defined in a cylinder without interaction between particles. Both fourth order and second order finite difference approximations are used for computing energy levels of 3D NLS defined in a cubic box and a cylinder, respectively. We show that the choice of trapping potential plays a key role in computing energy levels of the NLS. We also investigate multiple peak solutions for BEC confined in optical lattices. Sample numerical results for the NLS defined in a cylinder and a cubic box are reported. Specifically, our numerical results show that the number of peaks for the ground state solutions of BEC in a periodic potential depends on the distance of neighbor wells.

[1]  Qiang Du,et al.  Computing the Ground State Solution of Bose-Einstein Condensates by a Normalized Gradient Flow , 2003, SIAM J. Sci. Comput..

[2]  G. Hedstrom,et al.  Numerical Solution of Partial Differential Equations , 1966 .

[3]  M. Modugno,et al.  Optically induced lensing effect on a Bose-Einstein condensate expanding in a moving lattice. , 2003, Physical review letters.

[4]  P. Markowich,et al.  Numerical solution of the Gross--Pitaevskii equation for Bose--Einstein condensation , 2003, cond-mat/0303239.

[5]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[6]  Ming-Chih Lai,et al.  A formally fourth-order accurate compact scheme for 3D Poisson equation in cylindrical coordinates , 2007 .

[7]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[8]  E. Gross Structure of a quantized vortex in boson systems , 1961 .

[9]  S.-L. Chang,et al.  Adaptive continuation algorithms for computing energy levels of rotating Bose-Einstein condensates , 2007, Comput. Phys. Commun..

[10]  C. E. Wieman,et al.  Vortices in a Bose Einstein condensate , 1999, QELS 2000.

[11]  M. Lai A note on finite difference discretizations for Poisson equation on a disk , 2001 .

[12]  Andrew G. Glen,et al.  APPL , 2001 .

[13]  S.-L. Chang,et al.  Liapunov-Schmidt Reduction and Continuation for Nonlinear Schrödinger Equations , 2007, SIAM J. Sci. Comput..

[14]  Alok Shukla,et al.  A basis-set based Fortran program to solve the Gross-Pitaevskii equation for dilute Bose gases in harmonic and anharmonic traps , 2006, Comput. Phys. Commun..

[15]  Paulsamy Muruganandam,et al.  Bose-Einstein condensation dynamics in three dimensions by the pseudospectral and finite-difference methods , 2002, cond-mat/0210177.

[16]  H Saito,et al.  Intermittent implosion and pattern formation of trapped Bose-Einstein condensates with an attractive interaction. , 2001, Physical review letters.

[17]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[18]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[19]  Wolfgang Ketterle,et al.  Bose–Einstein condensation of atomic gases , 2002, Nature.

[20]  S. Berman,et al.  Nuovo Cimento , 1983 .

[21]  Biao Wu,et al.  Superfluidity of Bose–Einstein condensate in an optical lattice: Landau–Zener tunnelling and dynamical instability , 2003, cond-mat/0306411.

[22]  C. Sackett,et al.  Bose-Einstein Condensation of Lithium: Observation of Limited Condensate Number , 1997 .

[23]  Shi Jin,et al.  Numerical Study of Time-Splitting Spectral Discretizations of Nonlinear Schrödinger Equations in the Semiclassical Regimes , 2003, SIAM J. Sci. Comput..

[24]  C.-S. Chien,et al.  An efficient algorithm for the Schrödinger-Poisson eigenvalue problem , 2007 .

[25]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[26]  Magnetic field dependence of ultracold inelastic collisions near a feshbach resonance , 2000, Physical review letters.

[27]  S.-L. Chang,et al.  Numerical Continuation for Nonlinear SchrÖdinger Equations , 2007, Int. J. Bifurc. Chaos.

[28]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[29]  Weizhu Bao,et al.  Ground-state solution of Bose--Einstein condensate by directly minimizing the energy functional , 2003 .

[30]  Adhikari Numerical study of the spherically symmetric gross-pitaevskii equation in two space dimensions , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[31]  Weizhu Bao,et al.  An Explicit Unconditionally Stable Numerical Method for Solving Damped Nonlinear Schrödinger Equations with a Focusing Nonlinearity , 2003, SIAM Journal on Numerical Analysis.

[32]  Paulsamy Muruganandam,et al.  Bose-Einstein condensation dynamics from the numerical solution of the Gross-Pitaevskii equation , 2002 .

[33]  Graham F. Carey,et al.  A high-order compact formulation for the 3D Poisson equation , 1996 .

[34]  H. V. D. Vorst,et al.  Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .

[35]  P. Markowich,et al.  On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .

[36]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[37]  Hanquan Wang,et al.  Numerical studies on the split-step finite difference method for nonlinear Schrödinger equations , 2005, Appl. Math. Comput..

[38]  J. R. Ensher,et al.  Dynamics of component separation in a binary mixture of Bose-Einstein condensates , 1998 .

[39]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[40]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[41]  Sauro Succi,et al.  Numerical methods for atomic quantum gases with applications to Bose–Einstein condensates and to ultracold fermions , 2004 .

[42]  Víctor M. Pérez-García,et al.  Optimizing Schrödinger Functionals Using Sobolev Gradients: Applications to Quantum Mechanics and Nonlinear Optics , 2001, SIAM J. Sci. Comput..

[43]  Bradley,et al.  Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. , 1995, Physical review letters.

[44]  E. Arimondo,et al.  Experimental properties of Bose-Einstein condensates in one-dimensional optical lattices: Bloch oscillations, Landau-Zener tunneling, and mean-field effects , 2002 .

[45]  B. I. Schnieder,et al.  Numerical approach to the ground and excited states of a Bose-Einstein condensed gas confined in a completely anisotropic trap , 1999 .

[46]  J Dalibard,et al.  Dynamics of a single vortex line in a Bose-Einstein condensate. , 2002, Physical review letters.

[47]  S.-L. Chang,et al.  Computing wave functions of nonlinear Schrödinger equations: A time-independent approach , 2007, J. Comput. Phys..

[48]  K. B. Davis,et al.  Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.